Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biophys J ; 101(11): 2592-600, 2011 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-22261046

RESUMO

The activation of STAT transcription factors is a critical determinant of their subcellular distribution and their ability to regulate gene expression. Yet, it is not known how activation affects the behavior of individual STAT molecules in the cytoplasm and nucleus. To investigate this issue, we injected fluorescently labeled STAT1 in living HeLa cells and traced them by single-molecule microscopy. We determined that STAT1 moved stochastically in the cytoplasm and nucleus with very short residence times (<0.03 s) before activation. Upon activation, STAT1 mobility in the cytoplasm decreased ∼2.5-fold, indicating reduced movement of STAT1/importinα/ß complexes to the nucleus. In the nucleus, activated STAT1 displayed a distinct saltatory mobility, with residence times of up to 5 s and intermittent diffusive motion. In this manner, activated STAT1 factors can occupy their putative chromatin target sites within ∼2 s. These results provide a better understanding of the timescales on which cellular signaling and regulated gene transcription operate at the single-molecule level.


Assuntos
Núcleo Celular/metabolismo , Fator de Transcrição STAT1/metabolismo , Sobrevivência Celular , Rastreamento de Células , Citosol/metabolismo , Corantes Fluorescentes/metabolismo , Células HeLa , Humanos , Proteínas Mutantes/metabolismo , Transporte Proteico , Fator de Transcrição STAT1/química
2.
Biochim Biophys Acta ; 1803(3): 396-404, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19895852

RESUMO

The nucleus is the center of direction and coordination of the cell's metabolic and reproductive activities and contains numerous functionally specialized domains. These subnuclear structures are not delimited by membranes like cytoplasmic organelles and their function is only poorly understood. Here, we studied the most prominent nuclear domains, nucleoli and the remaining nucleoplasm. We used fluorescently labeled ovalbumin-ATTO647N, an inert protein, to examine their physical properties. This inert tracer was microinjected into the cytoplasm of HeLa cells, and after diffusion into the nucleus the tracer distribution and mobility in the two nuclear compartments was examined. Like many macromolecular probes ovalbumin was significantly less abundant in nucleoli compared to the nucleoplasm. High-speed fluorescence microscopy allowed visualizing and analyzing single tracer molecule trajectories within nucleoli and nucleoplasm. In accordance with previous studies we found that the viscosity of the nucleus is sevenfold higher than that of aqueous buffer. Notably, nucleoplasm and nucleoli did not significantly differ in viscosity, however, the fraction of slow or trapped molecules was higher in the nucleoplasm than in nucleoli (6% versus 0.2%). Surprisingly, even a completely inert molecule like ovalbumin showed at times short-lived binding events with a decay time of 8 ms in the nucleoplasm and even shorter-6.3 ms-within the nucleoli.


Assuntos
Nucléolo Celular/metabolismo , Núcleo Celular/metabolismo , Ovalbumina/metabolismo , Animais , Nucléolo Celular/ultraestrutura , Núcleo Celular/ultraestrutura , Corantes Fluorescentes/metabolismo , Células HeLa , Humanos , Microscopia Confocal , Ligação Proteica , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA