Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Lab Anim (NY) ; 49(9): 259-264, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32778807

RESUMO

Zebrafish have quickly emerged as a species of choice in preclinical research, holding promise to advance the field of behavioral pharmacology through high-throughput experiments. Besides biological and heuristic considerations, zebrafish also constitute a fundamental tool that fosters the replacement of mammals with less sentient experimental subjects. Notwithstanding these features, experimental paradigms to investigate emotional and cognitive domains in zebrafish are still limited. Studies on emotional memories have provided sound methodologies to investigate fear conditioning in zebrafish, but these protocols may still benefit from a reconsideration of the independent variables adopted to elicit aversion. Here, we designed a fear-conditioning paradigm in which wild-type zebrafish were familiarized over six training sessions with an empty compartment and a fear-eliciting one. The fearful stimulus was represented by three zebrafish replicas exhibiting a fully synchronized and polarized motion as they were maneuvered along 3D trajectories by a robotic platform. When allowed to freely swim between the two compartments in the absence of the robotic stimulus (test session), zebrafish displayed a marked avoidance of the stimulus-paired one. To investigate whether fear conditioning was modulated by psychoactive compounds, two groups of zebrafish were administered ethanol (0.25% and 1.00%, ethanol/water, by volume) a few minutes before the test session. We observed that ethanol administration abolished the conditioned avoidance of the stimulus-paired compartment. Ultimately, this study confirms that robotic stimuli may be used in the design of fear-conditioning paradigms, which are sensitive to pharmacological manipulations.


Assuntos
Aprendizagem da Esquiva , Medo , Robótica , Peixe-Zebra , Animais , Condicionamento Clássico , Memória
2.
PeerJ ; 7: e7893, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31637136

RESUMO

Zebrafish (Danio rerio) have recently emerged as a valuable laboratory species in the field of behavioral pharmacology, where they afford rapid and precise high-throughput drug screening. Although the behavioral repertoire of this species manifests along three-dimensional (3D), most of the efforts in behavioral pharmacology rely on two-dimensional (2D) projections acquired from a single overhead or front camera. We recently showed that, compared to a 3D scoring approach, 2D analyses could lead to inaccurate claims regarding individual and social behavior of drug-free experimental subjects. Here, we examined whether this conclusion extended to the field of behavioral pharmacology by phenotyping adult zebrafish, acutely exposed to citalopram (30, 50, and 100 mg/L) or ethanol (0.25%, 0.50%, and 1.00%), in the novel tank diving test over a 6-min experimental session. We observed that both compounds modulated the time course of general locomotion and anxiety-related profiles, the latter being represented by specific behaviors (erratic movements and freezing) and avoidance of anxiety-eliciting areas of the test tank (top half and distance from the side walls). We observed that 2D projections of 3D trajectories (ground truth data) may introduce a source of unwanted variation in zebrafish behavioral phenotyping. Predictably, both 2D views underestimate absolute levels of general locomotion. Additionally, while data obtained from a camera positioned on top of the experimental tank are similar to those obtained from a 3D reconstruction, 2D front view data yield false negative findings.

3.
Front Robot AI ; 6: 38, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-33501054

RESUMO

Zebrafish (Danio rerio) constitutes a valuable experimental species for the study of the biological determinants of emotional responses, such as fear and anxiety. Fear-related test paradigms traditionally entail the interaction between focal subjects and live predators, which may show inconsistent behavior throughout the experiment. To address this technical challenge, robotic stimuli are now frequently integrated in behavioral studies, yielding repeatable, customizable, and controllable experimental conditions. While most of the research has focused on open-loop control where robotic stimuli are preprogrammed to execute a priori known actions, recent work has explored the possibility of two-way interactions between robotic stimuli and live subjects. Here, we demonstrate a "closed-loop control" system to investigate fear response of zebrafish in which the response of the robotic stimulus is determined in real-time through a finite-state Markov chain constructed from independent observations on the interactions between zebrafish and their predator. Specifically, we designed a 3D-printed robotic replica of the zebrafish allopatric predator red tiger Oscar fish (Astronotus ocellatus), instrumented to interact in real-time with live subjects. We investigated the role of closed-loop control in modulating fear response in zebrafish through the analysis of the focal fish ethogram and the information-theoretic quantification of the interaction between the subject and the replica. Our results indicate that closed-loop control elicits consistent fear response in zebrafish and that zebrafish quickly adjust their behavior to avoid the predator's attacks. The augmented degree of interactivity afforded by the Markov-chain-dependent actuation of the replica constitutes a fundamental advancement in the study of animal-robot interactions and offers a new means for the development of experimental paradigms to study fear.

4.
J R Soc Interface ; 16(158): 20190359, 2019 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-31506048

RESUMO

Invasive alien species threaten biodiversity worldwide and contribute to biotic homogenization, especially in freshwaters, where the ability of native animals to disperse is limited. Robotics may offer a promising tool to address this compelling problem, but whether and how invasive species can be negatively affected by robotic stimuli is an open question. Here, we explore the possibility of modulating behavioural and life-history responses of mosquitofish by varying the degree of biomimicry of a robotic predator, whose appearance and locomotion are inspired by natural mosquitofish predators. Our results support the prediction that real-time interactions at varying swimming speeds evoke a more robust antipredator response in mosquitofish than simpler movement patterns by the robot, especially in individuals with better body conditions that are less prone to take risks. Through an information-theoretic analysis of animal-robot interactions, we offer evidence in favour of a causal link between the motion of the robotic predator and a fish antipredator response. Remarkably, we observe that even a brief exposure to the robotic predator of 15 min per week is sufficient to erode energy reserves and compromise the body condition of mosquitofish, opening the door for future endeavours to control mosquitofish in the wild.


Assuntos
Ciprinodontiformes , Comportamento Predatório , Robótica , Natação , Animais
5.
J Clin Med ; 8(10)2019 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-31547098

RESUMO

Adverse psychosocial experiences have been shown to modulate individual responses to immune challenges and affect mitochondrial functions. The aim of this study was to investigate inflammation and immune responses as well as mitochondrial bioenergetics in an experimental model of Paediatric Autoimmune Neuropsychiatric Disorders Associated with Streptococcus (PANDAS). Starting in adolescence (postnatal day 28), male SJL/J mice were exposed to five injections (interspaced by two weeks) with Group-A beta-haemolytic streptococcus (GAS) homogenate. Mice were exposed to chronic psychosocial stress, in the form of protracted visual exposure to an aggressive conspecific, for four weeks. Our results indicate that psychosocial stress exacerbated individual response to GAS administrations whereby mice exposed to both treatments exhibited altered cytokine and immune-related enzyme expression in the hippocampus and hypothalamus. Additionally, they showed impaired mitochondrial respiratory chain complexes IV and V, and reduced adenosine triphosphate (ATP) production by mitochondria and ATP content. These brain abnormalities, observed in GAS-Stress mice, were associated with blunted titers of plasma corticosterone. Present data support the hypothesis that challenging environmental conditions, in terms of chronic psychosocial stress, may exacerbate the long-term consequences of exposure to GAS processes through the promotion of central immunomodulatory and oxidative stress.

6.
Zebrafish ; 15(5): 433-444, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30070967

RESUMO

One commonly used method to preserve individual identity in the study of social behavior of zebrafish is through silicone-based visible implant elastomers (VIEs), which represent a safe and durable tagging procedure. While the effects of VIE tagging on welfare and general health have been addressed in detail, whether this procedure influences social behavior remains unclear. In this study, we compared individual and group behaviors exhibited by shoals composed of three individuals: two nontagged and one (focal subject) that was either nontagged (control condition) or sham-, purple-, blue-, or yellow tagged. Traditional behavioral parameters of activity, shoaling, and schooling (speed, polarization, and interindividual distances), along with an information-theoretic measure of social interaction (transfer entropy), were used to study the effect of tagging. Our findings indicate that tagging procedure per se significantly increased individual speed of the tagged subjects and of the group. The tagging procedure also altered the level of interaction between individuals, measured by transfer entropy. Conversely, tagging procedure did not influence shoaling and schooling tendencies. These findings suggest that VIE tagging may elicit some level of stress, which may affect some behavioral responses more than others. We recommend use of alternative methods such as multitracking systems when possible.


Assuntos
Comportamento Animal/fisiologia , Elastômeros , Comportamento Social , Peixe-Zebra/fisiologia , Animais , Silício/química
7.
Sci Rep ; 8(1): 10188, 2018 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-29976948

RESUMO

Increased glucocorticoid concentrations have been shown to favor resilience towards autoimmune phenomena. Here, we addressed whether experimentally induced elevations in circulating glucocorticoids mitigate the abnormalities exhibited by an experimental model of Pediatric Autoimmune Neuropsychiatric Disorders Associated with Streptococcus (PANDAS). This is a pathogenic hypothesis linking repeated exposures to Group-A-beta-hemolytic streptococcus (GAS), autoantibodies targeting selected brain nuclei and neurobehavioral abnormalities. To persistently elevate glucocorticoid concentrations, we supplemented lactating SJL/J mice with corticosterone (CORT; 80 mg/L) in the drinking water. Starting in adolescence (postnatal day 28), developing offspring were exposed to four injections - at bi-weekly intervals - of a GAS homogenate and tested for behavioral, immunological, neurochemical and molecular alterations. GAS mice showed increased perseverative behavior, impaired sensorimotor gating, reduced reactivity to a serotonergic agonist and inflammatory infiltrates in the anterior diencephalon. Neonatal CORT persistently increased circulating glucocorticoids concentrations and counteracted these alterations. Additionally, neonatal CORT increased peripheral and CNS concentrations of the anti-inflammatory cytokine IL-9. Further, upstream regulator analysis of differentially expressed genes in the striatum showed that the regulatory effect of estradiol is inhibited in GAS-treated mice and activated in GAS-treated mice exposed to CORT. These data support the hypothesis that elevations in glucocorticoids may promote central immunomodulatory processes.


Assuntos
Doenças Autoimunes/imunologia , Corpo Estriado/imunologia , Corticosterona/imunologia , Transtorno Obsessivo-Compulsivo/imunologia , Infecções Estreptocócicas/imunologia , Estresse Psicológico/imunologia , Animais , Animais Recém-Nascidos , Doenças Autoimunes/sangue , Doenças Autoimunes/diagnóstico , Doenças Autoimunes/microbiologia , Técnicas de Observação do Comportamento , Comportamento Animal , Corpo Estriado/metabolismo , Corticosterona/administração & dosagem , Corticosterona/sangue , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Interleucina-9/imunologia , Interleucina-9/metabolismo , Lactação , Masculino , Camundongos , Camundongos Endogâmicos , Transtorno Obsessivo-Compulsivo/sangue , Transtorno Obsessivo-Compulsivo/diagnóstico , Transtorno Obsessivo-Compulsivo/microbiologia , Infecções Estreptocócicas/sangue , Infecções Estreptocócicas/diagnóstico , Infecções Estreptocócicas/microbiologia , Streptococcus/patogenicidade , Estresse Psicológico/sangue
8.
Front Neurosci ; 10: 310, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27445678

RESUMO

Accumulating evidence suggests that Tourette's Syndrome (TS) - a multifactorial pediatric disorder characterized by the recurrent exhibition of motor tics and/or vocal utterances - can partly depend on immune dysregulation provoked by early repeated streptococcal infections. The natural and adaptive antibody-mediated reaction to streptococcus has been proposed to potentially turn into a pathological autoimmune response in vulnerable individuals. Specifically, in conditions of increased permeability of the blood brain barrier (BBB), streptococcus-induced antibodies have been proposed to: (i) reach neuronal targets located in brain areas responsible for motion control; and (ii) contribute to the exhibition of symptoms. This theoretical framework is supported by indirect evidence indicating that a subset of TS patients exhibit elevated streptococcal antibody titers upon tic relapses. A systematic evaluation of this hypothesis entails preclinical studies providing a proof of concept of the aforementioned pathological sequelae. These studies shall rest upon individuals characterized by a vulnerable immune system, repeatedly exposed to streptococcus, and carefully screened for phenotypes isomorphic to the pathological signs of TS observed in patients. Preclinical animal models may thus constitute an informative, useful tool upon which conducting targeted, hypothesis-driven experiments. In the present review we discuss the available evidence in preclinical models in support of the link between TS and pediatric autoimmune neuropsychiatric disorders associated with streptococcus infections (PANDAS), and the existing gaps that future research shall bridge. Specifically, we report recent preclinical evidence indicating that the immune responses to repeated streptococcal immunizations relate to the occurrence of behavioral and neurological phenotypes reminiscent of TS. By the same token, we discuss the limitations of these studies: limited evidence of behavioral phenotypes isomorphic to tics and scarce knowledge about the immunological phenomena favoring the transition from natural adaptive immunity to pathological outcomes.

9.
Alcohol ; 47(5): 391-8, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23725654

RESUMO

Preclinical animal models constitute a cornerstone against which the reward processes involved in drug addiction are often studied and dissected. While rodents have traditionally represented the species of choice, a growing body of literature indicates that zebrafish are emerging as a valuable model organism. Specifically, several studies demonstrate that the effects of ethanol at the level of emotional- and cognitive-related domains can be reliably investigated using zebrafish. The rapidly evolving nature of these efforts allows substantial room for the development of novel experimental paradigms suited to this freshwater species. The field of ethorobotics may prove particularly beneficial, due to its ability to convey fully controllable and easily reproducible experimental tools. In this study, we addressed the possibility of using a biologically inspired robot to investigate the emotionally related properties of ethanol in a preference task in zebrafish. To this aim, we evaluated wild-type zebrafish preference toward a robotic stimulus and addressed whether ethanol administration (0.25% and 1.00% ethanol/water concentration) may alter such preferences. In accordance with our previous studies, we observed that zebrafish exhibit a natural attraction toward the robot. Additionally, in agreement with our predictions, we showed that ethanol administration abolishes such preferences. This work is the first to demonstrate that robotic stimuli can be used in zebrafish to investigate the reward-related properties of alcohol.


Assuntos
Comportamento de Escolha/efeitos dos fármacos , Etanol/administração & dosagem , Etanol/farmacologia , Comportamento Exploratório/efeitos dos fármacos , Robótica/métodos , Peixe-Zebra/fisiologia , Animais , Comportamento de Escolha/fisiologia , Comportamento Exploratório/fisiologia , Feminino , Masculino , Recompensa
10.
Behav Brain Res ; 232(2): 406-10, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22469628

RESUMO

Mathematical models of fish schooling offer powerful tools to understand and interpret fundamental aspects of social life, such as foraging, predator avoidance, and migration. Here, we study zebrafish (Danio rerio) response to computer-animated fish shoals whose motion is generated by a mathematical model of schooling. We use a dichotomous test wherein fish freely position themselves near static images of zebrafish shoals or images animated by the model whose parameters are systematically varied.


Assuntos
Comportamento Animal , Modelos Biológicos , Reconhecimento Visual de Modelos , Comportamento Social , Peixe-Zebra , Animais , Pesquisa Comportamental/métodos , Simulação por Computador , Comportamento de Massa , Estimulação Luminosa/métodos , Percepção Social
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA