Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Opt Express ; 31(7): 11966-11981, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37155819

RESUMO

We propose and experimentally demonstrate parallel light detection and ranging (LiDAR) using random intensity fluctuations from a highly multimode laser. We optimize a degenerate cavity to have many spatial modes lasing simultaneously with different frequencies. Their spatio-temporal beating creates ultrafast random intensity fluctuations, which are spatially demultiplexed to generate hundreds of uncorrelated time traces for parallel ranging. The bandwidth of each channel exceeds 10 GHz, leading to a ranging resolution better than 1 cm. Our parallel random LiDAR is robust to cross-channel interference, and will facilitate high-speed 3D sensing and imaging.

2.
Nat Commun ; 12(1): 3327, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099658

RESUMO

Mid-infrared free-space optical communication has a large potential for high speed communication due to its immunity to electromagnetic interference. However, data security against eavesdroppers is among the obstacles for private free-space communication. Here, we show that two uni-directionally coupled quantum cascade lasers operating in the chaotic regime and the synchronization between them allow for the extraction of the information that has been camouflaged in the chaotic emission. This building block represents a key tool to implement a high degree of privacy directly on the physical layer. We realize a proof-of-concept communication at a wavelength of 5.7 µm with a message encryption at a bit rate of 0.5 Mbit/s. Our demonstration of private free-space communication between a transmitter and receiver opens strategies for physical encryption and decryption of a digital message.

3.
Sci Rep ; 9(1): 4451, 2019 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-30872670

RESUMO

Mid-infrared quantum cascade lasers operating under external optical feedback and external periodic bias forcing are shown to exhibit a deterministic chaotic pattern composed of frequencies which are linked to the one of the forcing. Results also show that both the amplitude and the frequency of the forcing play a key role in the number of retrieved spikes per modulation period. These findings are of paramount importance for chaotic operation of quantum cascade lasers in applications such as optical countermeasure systems and secure atmospheric transmission lines, as well as for simulating neuronal systems and the communication between neurons due to sudden bursts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA