Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
EMBO J ; 40(3): e103701, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33319920

RESUMO

SATB2 is a schizophrenia risk gene and is genetically associated with human intelligence. How it affects cognition at molecular level is currently unknown. Here, we show that interactions between SATB2, a chromosomal scaffolding protein, and the inner nuclear membrane protein LEMD2 orchestrate the response of pyramidal neurons to neuronal activation. Exposure to novel environment in vivo causes changes in nuclear shape of CA1 hippocampal neurons via a SATB2-dependent mechanism. The activity-driven plasticity of the nuclear envelope requires not only SATB2, but also its protein interactor LEMD2 and the ESCRT-III/VPS4 membrane-remodeling complex. Furthermore, LEMD2 depletion in cortical neurons, similar to SATB2 ablation, affects neuronal activity-dependent regulation of multiple rapid and delayed primary response genes. In human genetic data, LEMD2-regulated genes are enriched for de novo mutations reported in intellectual disability and schizophrenia and are, like SATB2-regulated genes, enriched for common variants associated with schizophrenia and cognitive function. Hence, interactions between SATB2 and the inner nuclear membrane protein LEMD2 influence gene expression programs in pyramidal neurons that are linked to cognitive ability and psychiatric disorder etiology.


Assuntos
Redes Reguladoras de Genes , Hipocampo/citologia , Deficiência Intelectual/genética , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Proteínas de Membrana/metabolismo , Mutação , Proteínas Nucleares/metabolismo , Esquizofrenia/genética , Fatores de Transcrição/metabolismo , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Animais , Núcleo Celular/metabolismo , Plasticidade Celular , Células Cultivadas , Cognição , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Células HeLa , Hipocampo/metabolismo , Humanos , Deficiência Intelectual/metabolismo , Masculino , Proteínas de Ligação à Região de Interação com a Matriz/química , Proteínas de Ligação à Região de Interação com a Matriz/genética , Proteínas de Membrana/química , Proteínas de Membrana/genética , Camundongos , Neurônios/citologia , Neurônios/metabolismo , Membrana Nuclear/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/genética , Esquizofrenia/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/genética , ATPases Vacuolares Próton-Translocadoras/metabolismo
2.
J Biol Chem ; 295(34): 12028-12044, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32611771

RESUMO

The endosomal sorting complexes required for transport (ESCRT) mediate evolutionarily conserved membrane remodeling processes. Here, we used budding yeast (Saccharomyces cerevisiae) to explore how the ESCRT machinery contributes to plasma membrane (PM) homeostasis. We found that in response to reduced membrane tension and inhibition of TOR complex 2 (TORC2), ESCRT-III/Vps4 assemblies form at the PM and help maintain membrane integrity. In turn, the growth of ESCRT mutants strongly depended on TORC2-mediated homeostatic regulation of sphingolipid (SL) metabolism. This was caused by calcineurin-dependent dephosphorylation of Orm2, a repressor of SL biosynthesis. Calcineurin activity impaired Orm2 export from the endoplasmic reticulum (ER) and thereby hampered its subsequent endosome and Golgi-associated degradation (EGAD). The ensuing accumulation of Orm2 at the ER in ESCRT mutants necessitated TORC2 signaling through its downstream kinase Ypk1, which repressed Orm2 and prevented a detrimental imbalance of SL metabolism. Our findings reveal compensatory cross-talk between the ESCRT machinery, calcineurin/TORC2 signaling, and the EGAD pathway important for the regulation of SL biosynthesis and the maintenance of PM homeostasis.


Assuntos
Membrana Celular/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Membrana Celular/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Mutação , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Dev Cell ; 53(1): 27-41.e6, 2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-32109380

RESUMO

Eukaryotic genomes are organized within the nucleus through interactions with inner nuclear membrane (INM) proteins. How chromatin tethering to the INM is controlled in interphase and how this process contributes to subsequent mitotic nuclear envelope (NE) remodeling remains unclear. We have probed these fundamental questions using the fission yeast Schizosaccharomyces japonicus, which breaks and reforms the NE during mitosis. We show that attachments between heterochromatin and the transmembrane Lem2-Nur1 complex at the INM are remodeled in interphase by the ESCRT-III/Vps4 machinery. Failure of ESCRT-III/Vps4 to release Lem2-Nur1 from heterochromatin leads to persistent association of chromosomes with the INM throughout mitosis. At mitotic exit, such trapping of Lem2-Nur1 on heterochromatin prevents it from re-establishing nucleocytoplasmic compartmentalization. Our work identifies the Lem2-Nur1 complex as a substrate for the nuclear ESCRT machinery and explains how the dynamic tethering of chromosomes to the INM is linked to the establishment of nuclear compartmentalization.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Heterocromatina/metabolismo , Membrana Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Cromatina/metabolismo , Proteínas de Membrana/metabolismo , Mitose/fisiologia , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo
4.
J Cell Biol ; 219(3)2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-32045480

RESUMO

Cellular adaptation in response to nutrient limitation requires the induction of autophagy and lysosome biogenesis for the efficient recycling of macromolecules. Here, we discovered that starvation and TORC1 inactivation not only lead to the up-regulation of autophagy and vacuole proteins involved in recycling but also result in the down-regulation of many vacuole membrane proteins to supply amino acids as part of a vacuole remodeling process. Down-regulation of vacuole membrane proteins is initiated by ubiquitination, which is accomplished by the coordination of multiple E3 ubiquitin ligases, including Rsp5, the Dsc complex, and a newly characterized E3 ligase, Pib1. The Dsc complex is negatively regulated by TORC1 through the Rim15-Ume6 signaling cascade. After ubiquitination, vacuole membrane proteins are sorted into the lumen for degradation by ESCRT-dependent microautophagy. Thus, our study uncovered a complex relationship between TORC1 inactivation and vacuole biogenesis.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Membranas Intracelulares/enzimologia , Microautofagia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Fatores de Transcrição/metabolismo , Ubiquitina/metabolismo , Vacúolos/enzimologia , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Transporte Proteico , Proteólise , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais , Fatores de Tempo , Fatores de Transcrição/genética , Complexos Ubiquitina-Proteína Ligase/genética , Complexos Ubiquitina-Proteína Ligase/metabolismo , Ubiquitinação , Vacúolos/genética
5.
Elife ; 62017 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-29019322

RESUMO

The ESCRT machinery mediates reverse membrane scission. By quantitative fluorescence lattice light-sheet microscopy, we have shown that ESCRT-III subunits polymerize rapidly on yeast endosomes, together with the recruitment of at least two Vps4 hexamers. During their 3-45 s lifetimes, the ESCRT-III assemblies accumulated 75-200 Snf7 and 15-50 Vps24 molecules. Productive budding events required at least two additional Vps4 hexamers. Membrane budding was associated with continuous, stochastic exchange of Vps4 and ESCRT-III components, rather than steady growth of fixed assemblies, and depended on Vps4 ATPase activity. An all-or-none step led to final release of ESCRT-III and Vps4. Tomographic electron microscopy demonstrated that acute disruption of Vps4 recruitment stalled membrane budding. We propose a model in which multiple Vps4 hexamers (four or more) draw together several ESCRT-III filaments. This process induces cargo crowding and inward membrane buckling, followed by constriction of the nascent bud neck and ultimately ILV generation by vesicle fission.


Assuntos
Adenosina Trifosfatases/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Endossomos/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Tomografia com Microscopia Eletrônica , Microscopia de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA