Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
New Phytol ; 235(6): 2365-2377, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35901264

RESUMO

Nitrogen-fixing symbiosis is globally important in ecosystem functioning and agriculture, yet the evolutionary history of nodulation remains the focus of considerable debate. Recent evidence suggesting a single origin of nodulation followed by massive parallel evolutionary losses raises questions about why a few lineages in the N2 -fixing clade retained nodulation and diversified as stable nodulators, while most did not. Within legumes, nodulation is restricted to the two most diverse subfamilies, Papilionoideae and Caesalpinioideae, which show stable retention of nodulation across their core clades. We characterize two nodule anatomy types across 128 species in 56 of the 152 genera of the legume subfamily Caesalpinioideae: fixation thread nodules (FTs), where nitrogen-fixing bacteroids are retained within the apoplast in modified infection threads, and symbiosomes, where rhizobia are symplastically internalized in the host cell cytoplasm within membrane-bound symbiosomes (SYMs). Using a robust phylogenomic tree based on 997 genes from 147 Caesalpinioideae genera, we show that losses of nodulation are more prevalent in lineages with FTs than those with SYMs. We propose that evolution of the symbiosome allows for a more intimate and enduring symbiosis through tighter compartmentalization of their rhizobial microsymbionts, resulting in greater evolutionary stability of nodulation across this species-rich pantropical legume clade.


Assuntos
Fabaceae , Rhizobium , Ecossistema , Fabaceae/genética , Nitrogênio , Fixação de Nitrogênio , Nodulação/genética , Nódulos Radiculares de Plantas , Simbiose
2.
Proc Natl Acad Sci U S A ; 113(15): 4098-103, 2016 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-27035971

RESUMO

Using robust, pairwise comparisons and a global dataset, we show that nitrogen concentration per unit leaf mass for nitrogen-fixing plants (N2FP; mainly legumes plus some actinorhizal species) in nonagricultural ecosystems is universally greater (43-100%) than that for other plants (OP). This difference is maintained across Koppen climate zones and growth forms and strongest in the wet tropics and within deciduous angiosperms. N2FP mostly show a similar advantage over OP in nitrogen per leaf area (Narea), even in arid climates, despite diazotrophy being sensitive to drought. We also show that, for most N2FP, carbon fixation by photosynthesis (Asat) and stomatal conductance (gs) are not related to Narea-in distinct challenge to current theories that place the leaf nitrogen-Asat relationship at the center of explanations of plant fitness and competitive ability. Among N2FP, only forbs displayed an Narea-gs relationship similar to that for OP, whereas intrinsic water use efficiency (WUEi; Asat/gs) was positively related to Narea for woody N2FP. Enhanced foliar nitrogen (relative to OP) contributes strongly to other evolutionarily advantageous attributes of legumes, such as seed nitrogen and herbivore defense. These alternate explanations of clear differences in leaf N between N2FP and OP have significant implications (e.g., for global models of carbon fluxes based on relationships between leaf N and Asat). Combined, greater WUE and leaf nitrogen-in a variety of forms-enhance fitness and survival of genomes of N2FP, particularly in arid and semiarid climates.


Assuntos
Fabaceae/fisiologia , Fotossíntese , Folhas de Planta/fisiologia , Água , Ecossistema
3.
Ecology ; 99(2): 502, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29226306

RESUMO

How species interactions shape global biodiversity and influence diversification is a central - but also data-hungry - question in evolutionary ecology. Microbially based mutualisms are widespread and could cause diversification by ameliorating stress and thus allowing organisms to colonize and adapt to otherwise unsuitable habitats. Yet the role of these interactions in generating species diversity has received limited attention, especially across large taxonomic groups. In the massive angiosperm family Leguminosae, plants often associate with root-nodulating bacteria that ameliorate nutrient stress by fixing atmospheric nitrogen. These symbioses are ecologically-important interactions, influencing community assembly, diversity, and succession, contributing ~100-290 million tons of N annually to natural ecosystems, and enhancing growth of agronomically-important forage and crop plants worldwide. In recent work attempting to determine whether mutualism with N-fixing bacteria led to increased diversification across legumes, we were unable to definitively resolve the relationship between diversification and nodulation. We did, however, succeed in compiling a very large searchable, analysis-ready database of nodulation data for 749 legume genera (98% of Leguminosae genera; LPWG 2017), which, along with associated phylogenetic information, will provide a valuable resource for future work addressing this question and others. For each legume genus, we provide information about the species richness, frequency of nodulation, subfamily association, and topological correspondence with an additional data set of 100 phylogenetic trees curated for database compatibility. We found 386 legume genera were confirmed nodulators (i.e., all species examined for nodulation nodulated), 116 were non-nodulating, four were variable (i.e., containing both confirmed nodulators and confirmed non-nodulators), and 243 had not been examined for nodulation in published studies. Interestingly, data exploration revealed that nodulating legume genera are ~3 × more species-rich than non-nodulating genera, but we did not find evidence that this difference in diversity was due to differences in net diversification rate. Our metadata file describes in more detail the structure of these data that provide a foundational resource for future work as more nodulation data become available, and as greater phylogenetic resolution of this ca. 19,500-species family comes into focus. We release this data set under the Creative Commons 4.0 Attribution-ShareAlike License (https://creativecommons.org/licenses/by-sa/4.0/). The data may be used, distributed, and reproduced with proper citation of this article.

4.
New Phytol ; 215(1): 40-56, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28211601

RESUMO

Contents 40 I. 40 II. 41 III. 44 IV. 48 V. 49 VI. 49 VII. 52 VIII. 53 53 References 53 SUMMARY: In the last decade, analyses of both molecular and morphological characters, including nodulation, have led to major changes in our understanding of legume taxonomy. In parallel there has been an explosion in the number of genera and species of rhizobia known to nodulate legumes. No attempt has been made to link these two sets of data or to consider them in a biogeographical context. This review aims to do this by relating the data to the evolution of the two partners: it highlights both longitudinal and latitudinal trends and considers these in relation to the location of major land masses over geological time. Australia is identified as being a special case and latitudes north of the equator as being pivotal in the evolution of highly specialized systems in which the differentiated rhizobia effectively become ammonia factories. However, there are still many gaps to be filled before legume nodulation is sufficiently understood to be managed for the benefit of a world in which climate change is rife.


Assuntos
Fabaceae/fisiologia , Fixação de Nitrogênio , Biodiversidade , Evolução Biológica , Fabaceae/classificação , Fabaceae/microbiologia , Filogeografia , Nódulos Radiculares de Plantas/metabolismo , Nódulos Radiculares de Plantas/microbiologia , Simbiose
5.
Appl Environ Microbiol ; 82(17): 5099-115, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27316955

RESUMO

UNLABELLED: Rhizobia of the genus Burkholderia have large-scale distribution ranges and are usually associated with South African papilionoid and South American mimosoid legumes, yet little is known about their genetic structuring at either local or global geographic scales. To understand variation at different spatial scales, from individual legumes in the fynbos (South Africa) to a global context, we analyzed chromosomal (16S rRNA, recA) and symbiosis (nifH, nodA, nodC) gene sequences. We showed that the global diversity of nodulation genes is generally grouped according to the South African papilionoid or South American mimosoid subfamilies, whereas chromosomal sequence data were unrelated to biogeography. While nodulation genes are structured on a continental scale, a geographic or host-specific distribution pattern was not detected in the fynbos region. In host range experiments, symbiotic promiscuity of Burkholderia tuberum STM678(T) and B phymatum STM815(T) was discovered in selected fynbos species. Finally, a greenhouse experiment was undertaken to assess the ability of mimosoid (Mimosa pudica) and papilionoid (Dipogon lignosus, Indigofera filifolia, Macroptilium atropurpureum, and Podalyria calyptrata) species to nodulate in South African (fynbos) and Malawian (savanna) soils. While the Burkholderia-philous fynbos legumes (D lignosus, I filifolia, and P calyptrata) nodulated only in their native soils, the invasive neotropical species M pudica did not develop nodules in the African soils. The fynbos soil, notably rich in Burkholderia, seems to retain nodulation genes compatible with the local papilionoid legume flora but is incapable of nodulating mimosoid legumes that have their center of diversity in South America. IMPORTANCE: This study is the most comprehensive phylogenetic assessment of root-nodulating Burkholderia and investigated biogeographic and host-related patterns of the legume-rhizobial symbiosis in the South African fynbos biome, as well as at global scales, including native species from the South American Caatinga and Cerrado biomes. While a global investigation of the rhizobial diversity revealed distinct nodulation and nitrogen fixation genes among South African and South American legumes, regionally distributed species in the Cape region were unrelated to geographic and host factors.


Assuntos
Burkholderia/fisiologia , Fabaceae/microbiologia , Nódulos Radiculares de Plantas/microbiologia , Burkholderia/classificação , Burkholderia/genética , Burkholderia/isolamento & purificação , Fabaceae/classificação , Especificidade de Hospedeiro , Filogenia , África do Sul , América do Sul , Simbiose
6.
New Phytol ; 209(1): 319-33, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26214613

RESUMO

The legume genus Mimosa has > 500 species, with two major centres of diversity, Brazil (c. 350 spp.) and Mexico (c. 100 spp.). In Brazil most species are nodulated by Burkholderia. Here we asked whether this is also true of native and endemic Mexican species. We have tested this apparent affinity for betaproteobacteria by examining the symbionts of native and endemic species of Mimosa in Mexico, especially from the central highlands where Mimosa spp. have diversified. Nodules were tested for betaproteobacteria using in situ immunolocalization. Rhizobia isolated from the nodules were genetically characterized and tested for their ability to nodulate Mimosa spp. Immunological analysis of 25 host taxa suggested that most (including all the highland endemics) were not nodulated by betaproteobacteria. Phylogenetic analyses of 16S rRNA, recA, nodA, nodC and nifH genes from 87 strains isolated from 20 taxa confirmed that the endemic Mexican Mimosa species favoured alphaproteobacteria in the genera Rhizobium and Ensifer: this was confirmed by nodulation tests. Host phylogeny, geographic isolation and coevolution with symbionts derived from very different soils have potentially contributed to the striking difference in the choice of symbiotic partners by Mexican and Brazilian Mimosa species.


Assuntos
Mimosa/microbiologia , Rhizobium/genética , Simbiose , Proteínas de Bactérias/genética , Sequência de Bases , Evolução Biológica , Especificidade de Hospedeiro , México , Filogenia , Nodulação , Rhizobium/classificação , Rhizobium/fisiologia , Análise de Sequência de DNA
7.
Microb Ecol ; 68(3): 542-55, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24801964

RESUMO

The South African invasive legume Dipogon lignosus (Phaseoleae) produces nodules with both determinate and indeterminate characteristics in New Zealand (NZ) soils. Ten bacterial isolates produced functional nodules on D. lignosus. The 16S ribosomal RNA (rRNA) gene sequences identified one isolate as Bradyrhizobium sp., one isolate as Rhizobium sp. and eight isolates as Burkholderia sp. The Bradyrhizobium sp. and Rhizobium sp. 16S rRNA sequences were identical to those of strains previously isolated from crop plants and may have originated from inocula used on crops. Both 16S rRNA and DNA recombinase A (recA) gene sequences placed the eight Burkholderia isolates separate from previously described Burkholderia rhizobial species. However, the isolates showed a very close relationship to Burkholderia rhizobial strains isolated from South African plants with respect to their nitrogenase iron protein (nifH), N-acyltransferase nodulation protein A (nodA) and N-acetylglucosaminyl transferase nodulation protein C (nodC) gene sequences. Gene sequences and enterobacterial repetitive intergenic consensus (ERIC) PCR and repetitive element palindromic PCR (rep-PCR) banding patterns indicated that the eight Burkholderia isolates separated into five clones of one strain and three of another. One strain was tested and shown to produce functional nodules on a range of South African plants previously reported to be nodulated by Burkholderia tuberum STM678(T) which was isolated from the Cape Region. Thus, evidence is strong that the Burkholderia strains isolated here originated in South Africa and were somehow transported with the plants from their native habitat to NZ. It is possible that the strains are of a new species capable of nodulating legumes.


Assuntos
Burkholderia/fisiologia , Fabaceae/microbiologia , Espécies Introduzidas , Nodulação , Burkholderia/genética , Genes Bacterianos , Nova Zelândia , Filogenia , RNA Ribossômico 16S/genética , África do Sul
8.
Ann Bot ; 112(1): 179-96, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23712450

RESUMO

BACKGROUND AND AIMS: The large monophyletic genus Mimosa comprises approx. 500 species, most of which are native to the New World, with Central Brazil being the main centre of radiation. All Brazilian Mimosa spp. so far examined are nodulated by rhizobia in the betaproteobacterial genus Burkholderia. Approximately 10 Mya, transoceanic dispersal resulted in the Indian subcontinent hosting up to six endemic Mimosa spp. The nodulation ability and rhizobial symbionts of two of these, M. hamata and M. himalayana, both from north-west India, are here examined, and compared with those of M. pudica, an invasive species. METHODS: Nodules were collected from several locations, and examined by light and electron microscopy. Rhizobia isolated from them were characterized in terms of their abilities to nodulate the three Mimosa hosts. The molecular phylogenetic relationships of the rhizobia were determined by analysis of 16S rRNA, nifH and nodA gene sequences. KEY RESULTS: Both native Indian Mimosa spp. nodulated effectively in their respective rhizosphere soils. Based on 16S rRNA, nifH and nodA sequences, their symbionts were identified as belonging to the alphaproteobacterial genus Ensifer, and were closest to the 'Old World' Ensifer saheli, E. kostiensis and E. arboris. In contrast, the invasive M. pudica was predominantly nodulated by Betaproteobacteria in the genera Cupriavidus and Burkholderia. All rhizobial strains tested effectively nodulated their original hosts, but the symbionts of the native species could not nodulate M. pudica. CONCLUSIONS: The native Mimosa spp. in India are not nodulated by the Burkholderia symbionts of their South American relatives, but by a unique group of alpha-rhizobial microsymbionts that are closely related to the 'local' Old World Ensifer symbionts of other mimosoid legumes in north-west India. They appear not to share symbionts with the invasive M. pudica, symbionts of which are mostly beta-rhizobial.


Assuntos
Espécies Introduzidas , Mimosa/microbiologia , Rhizobium/fisiologia , Simbiose , Inoculantes Agrícolas/genética , Alphaproteobacteria/genética , Alphaproteobacteria/isolamento & purificação , Biodiversidade , Burkholderia/genética , Burkholderia/isolamento & purificação , Cupriavidus/genética , Cupriavidus/isolamento & purificação , Genes Bacterianos , Índia , Filogenia , Raízes de Plantas/genética , Raízes de Plantas/microbiologia , RNA Ribossômico 16S/genética , América do Sul
9.
Int J Syst Evol Microbiol ; 63(Pt 2): 435-441, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22467155

RESUMO

Five strains, JPY461(T), JPY359, JPY389, DPU-3 and STM4206 were isolated from nitrogen-fixing nodules on the roots of Mimosa spp. and their taxonomic positions were investigated using a polyphasic approach. All five strains grew at 15-40 °C (optimum, 30-37 °C), at pH 4.0-8.0 (optimum, pH 6.0-7.0) and with 0-1 % (w/v) NaCl [optimum, 0 % (w/v)]. On the basis of 16S rRNA gene sequence analysis, a representative strain (JPY461(T)) showed 97.2 % sequence similarity to the closest related species Burkholderia acidipaludis SA33(T), a similarity of 97.2 % to Burkholderia terrae KMY02(T), 97.1 % to Burkholderia phymatum STM815(T) and 97.1 % to Burkholderia hospita LMG 20598(T). The predominant fatty acids of the five novel strains were summed feature 2 (comprising C(16 : 1) iso I and/or C(14 : 0) 3-OH), summed feature 3 (comprising C(16 : 1)ω7c and/or C(16 : 1)ω6c), C(16 : 0) , C(16 : 0) 3-OH, C(17 : 0) cyclo, C(18 : 1)ω7c and C(19 : 0) cyclo ω8c. The major isoprenoid quinone was Q-8 and the DNA G+C content of the strains was 63.0-65.0 mol%. The polar lipid profile consisted of a mixture of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, an unidentified aminophospholipid, an unidentified aminolipid and several unidentified phospholipids. The DNA-DNA relatedness of the novel strain with respect to recognized species of the genus Burkholderia was less than 54 %. On the basis of 16S rRNA and recA gene sequence similarities, chemotaxonomic and phenotypic data, the five strains represent a novel species in the genus Burkholderia, for which the name Burkholderia diazotrophica sp. nov. is proposed with the type strain, JPY461(T) ( = LMG 26031(T) = BCRC 80259(T) = KCTC 23308(T)).


Assuntos
Burkholderia/classificação , Mimosa/microbiologia , Filogenia , Nódulos Radiculares de Plantas/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , Brasil , Burkholderia/genética , Burkholderia/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos/análise , Genes Bacterianos , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , Fosfolipídeos/análise , Quinonas/análise , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
10.
Int J Syst Evol Microbiol ; 62(Pt 9): 2272-2278, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22081715

RESUMO

Four strains, designated JPY-345(T), JPY-347, JPY-366 and JPY-581, were isolated from nitrogen-fixing nodules on the roots of two species of Mimosa, Mimosa cordistipula and Mimosa misera, that are native to North East Brazil, and their taxonomic positions were investigated by using a polyphasic approach. All four strains grew at 15-43 °C (optimum 35 °C), at pH 4-7 (optimum pH 5) and with 0-2 % (w/v) NaCl (optimum 0 % NaCl). On the basis of 16S rRNA gene sequence analysis, strain JPY-345(T) showed 97.3 % sequence similarity to the closest related species Burkholderia soli GP25-8(T), 97.3 % sequence similarity to Burkholderia caryophylli ATCC25418(T) and 97.1 % sequence similarity to Burkholderia kururiensis KP23(T). The predominant fatty acids of the strains were C(18 : 1)ω7c (36.1 %), C(16 : 0) (19.8 %) and summed feature 3, comprising C(16 : 1)ω7c and/or C(16 : 1)ω6c (11.5 %). The major isoprenoid quinone was Q-8 and the DNA G+C content of the strains was 64.2-65.7 mol%. The polar lipid profile consisted of a mixture of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and several uncharacterized aminophospholipids and phospholipids. DNA-DNA hybridizations between the novel strain and recognized species of the genus Burkholderia yielded relatedness values of <51.8 %. On the basis of 16S rRNA and recA gene sequence similarities and chemotaxonomic and phenotypic data, the four strains represent a novel species in the genus Burkholderia, for which the name Burkholderia symbiotica sp. nov. is proposed. The type strain is JPY-345(T) (= LMG 26032(T) = BCRC 80258(T) = KCTC 23309(T)).


Assuntos
Burkholderia/classificação , Mimosa/microbiologia , Filogenia , Nódulos Radiculares de Plantas/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , Brasil , Burkholderia/genética , Burkholderia/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos/análise , Dados de Sequência Molecular , Fosfolipídeos/análise , Quinonas/análise , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
11.
FEMS Microbiol Ecol ; 98(9)2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-35833268

RESUMO

More than 200 root-nodule bacterial strains were isolated from Leucaena leucocephala growing at 42 sampling sites across 12 states and three union territories of India. Genetic diversity was observed among 114 strains from various climatic zones; based on recA, these were identified as strains of Ensifer, Mesorhizobium, Rhizobium, and Bradyrhizobium. In multilocus sequence analysis (MLSA) strains clustered into several novel clades and lineages. Ensifer were predominant nodulating genotype isolated from majority of alkaline soils, while Mesorhizobium and Rhizobium strains were isolated from a limited sampling in North-Eastern states with acidic soils. Positive nodulation assays of selected Ensifer representing different genetic combinations of housekeeping and sym genes suggested their broad host range within the closely related mimosoid genera Vachellia, Senegalia, Mimosa, and Prosopis. Leucaena selected diverse strains of Ensifer and Mesorhizobium as symbionts depending on available soil pH, climatic, and other edaphic conditions in India. Lateral gene transfer seems to play a major role in genetic diversification of Ensifer exhibited in terms of Old World vs. Neotropical genetic make-up and mixed populations at several sites. Although Neotropical Ensifer strains were most symbiotically effective on Leucaena, the native Ensifer are promiscuous and particularly well-adapted to a wide range of sampling sites with varied climates and edaphic factors.


Assuntos
Fabaceae , Mesorhizobium , Rhizobiaceae , Rhizobium , DNA Bacteriano , Transferência Genética Horizontal , Filogenia , RNA Ribossômico 16S , Nódulos Radiculares de Plantas , Solo , Simbiose
12.
Mol Plant Microbe Interact ; 24(11): 1276-88, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21830951

RESUMO

Rhizobia form specialized nodules on the roots of legumes (family Fabaceae) and fix nitrogen in exchange for carbon from the host plant. Although the majority of legumes form symbioses with members of genus Rhizobium and its relatives in class Alphaproteobacteria, some legumes, such as those in the large genus Mimosa, are nodulated predominantly by betaproteobacteria in the genera Burkholderia and Cupriavidus. The principal centers of diversity of these bacteria are in central Brazil and South Africa. Molecular phylogenetic studies have shown that betaproteobacteria have existed as legume symbionts for approximately 50 million years, and that, although they have a common origin, the symbiosis genes in both subclasses have evolved separately since then. Additionally, some species of genus Burkholderia, such as B. phymatum, are highly promiscuous, effectively nodulating several important legumes, including common bean (Phaseolus vulgaris). In contrast to genus Burkholderia, only one species of genus Cupriavidus (C. taiwanensis) has so far been shown to nodulate legumes. The recent availability of the genome sequences of C. taiwanensis, B. phymatum, and B. tuberum has paved the way for a more detailed analysis of the evolutionary and mechanistic differences between nodulating strains of alpha- and betaproteobacteria. Initial analyses of genome sequences have suggested that plant-associated Burkholderia spp. have lower G+C contents than Burkholderia spp. that are opportunistic human pathogens, thus supporting previous suggestions that the plant- and human-associated groups of Burkholderia actually belong in separate genera.


Assuntos
Betaproteobacteria/fisiologia , Fabaceae/microbiologia , Fixação de Nitrogênio , Betaproteobacteria/classificação , Betaproteobacteria/genética , Interações Hospedeiro-Patógeno , Filogenia , RNA Ribossômico 16S/genética , Especificidade da Espécie
13.
New Phytol ; 187(2): 508-520, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20456052

RESUMO

SUMMARY: *When rhizobia differentiate inside legume host nodules to become nitrogen-fixing bacteroids, they undergo a physiological as well as a morphological transformation. These transformations are more extreme in some legume species than others, leading to fundamental differences in rhizobial life history and evolution. Here, we analysed the distribution of different bacteroid morphologies over a legume phylogeny to understand the evolutionary history of this host-influenced differentiation. *Using existing electron micrographs and new flow cytometric analyses, bacteroid morphologies were categorized as swollen or nonswollen for 40 legume species in the subfamily Papilionoideae. Maximum likelihood and Bayesian frameworks were used to reconstruct ancestral states at the bases of all major subclades within the papilionoids. *Extreme bacteroid differentiation leading to swelling was found in five out of the six major papilionoid subclades. The inferred ancestral state for the Papilionoideae was hosting nonswollen bacteroids, indicating at least five independent origins of host traits leading to swollen bacteroids. *Repeated evolution of host traits causing bacteroid swelling indicates a possible fitness benefit to the plant. Furthermore, as bacteroid swelling is often correlated with loss of reproductive viability, the evolution of bacteroid cooperation or cheating strategies could be fundamentally different between the two bacteroid morphologies.


Assuntos
Evolução Molecular , Fabaceae/genética , Fabaceae/microbiologia , Característica Quantitativa Herdável , Rhizobium/fisiologia , Citometria de Fluxo , Filogenia , Rhizobium/citologia , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/microbiologia , Especificidade da Espécie
14.
New Phytol ; 186(4): 934-946, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20456044

RESUMO

*An extensive survey of nodulation in the legume genus Mimosa was undertaken in two major biomes in Brazil, the Cerrado and the Caatinga, in both of which there are high degrees of endemicity of the genus. *Nodules were collected from 67 of the 70 Mimosa spp. found. Thirteen of the species were newly reported as nodulating. Nodules were examined by light and electron microscopy, and all except for M. gatesiae had a structure typical of effective Mimosa nodules. The endosymbiotic bacteria in nodules from all of the Mimosa spp. were identified as Burkholderia via immunolabelling with an antibody against Burkholderia phymatum STM815. *Twenty of the 23 Mimosa nodules tested were shown to contain nitrogenase by immunolabelling with an antibody to the nitrogenase Fe- (nifH) protein, and using the delta(15)N ((15)N natural abundance) technique, contributions by biological N(2) fixation of up to 60% of total plant N were calculated for Caatinga Mimosa spp. *It is concluded that nodulation in Mimosa is a generic character, and that the preferred symbionts of Brazilian species are Burkholderia. This is the first study to demonstrate N(2) fixation by beta-rhizobial symbioses in the field.


Assuntos
Ecossistema , Mimosa/fisiologia , Fixação de Nitrogênio/fisiologia , Nodulação/fisiologia , Acetileno/metabolismo , Western Blotting , Brasil , Geografia , Mimosa/citologia , Mimosa/microbiologia , Mimosa/ultraestrutura , Isótopos de Nitrogênio , Oxirredução , Oxirredutases/metabolismo , Rhizobium/fisiologia , Nódulos Radiculares de Plantas/citologia , Nódulos Radiculares de Plantas/enzimologia , Nódulos Radiculares de Plantas/microbiologia , Nódulos Radiculares de Plantas/ultraestrutura , Simbiose
15.
Mol Ecol ; 19(1): 44-52, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20002602

RESUMO

Burkholderia has only recently been recognized as a potential nitrogen-fixing symbiont of legumes, but we find that the origins of symbiosis in Burkholderia are much deeper than previously suspected. We sampled 143 symbionts from 47 native species of Mimosa across 1800 km in central Brazil and found that 98% were Burkholderia. Gene sequences defined seven distinct and divergent species complexes within the genus Burkholderia. The symbiosis-related genes formed deep Burkholderia-specific clades, each specific to a species complex, implying that these genes diverged over a long period within Burkholderia without substantial horizontal gene transfer between species complexes.


Assuntos
Burkholderia/genética , Mimosa/microbiologia , Filogenia , Simbiose , Brasil , Burkholderia/classificação , DNA Bacteriano/genética , Evolução Molecular , Genes Bacterianos , Geografia , Alinhamento de Sequência , Análise de Sequência de DNA , Especificidade da Espécie
16.
J Exp Bot ; 61(5): 1257-65, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19939887

RESUMO

Although nodulated legumes have been used by indigenous peoples in Africa for centuries, their full potential has never been realized. With modern technology there is scope for rapid improvement of both plant and microbial germplasm. This review gives examples of some recent developments in the form of case studies; these range from multipurpose human food crops, such as cowpea (Vigna unguiculata (L.) Walp.), through to beverages (teas) that are also income-generating such as rooibos (Aspalathus linearis (Burm. f.) R. Dahlgren, honeybush (Cyclopia Vent. spp.), and the widely used food additive gum arabic (Acacia senegal (L.) Willd.). These and other potential crops are well-adapted to the many different soil and climatic conditions of Africa, in particular, drought and low nutrients. All can nodulate and fix nitrogen, with varying degrees of effectiveness and using a range of bacterial symbionts. The further development of these and other species is essential, not only for African use, but also to retain the agricultural diversity that is essential for a changing world that is being increasingly dominated by a few crops such as soybean.


Assuntos
Fabaceae/crescimento & desenvolvimento , Acacia/crescimento & desenvolvimento , Acacia/metabolismo , Acacia/microbiologia , África , Aspalathus/crescimento & desenvolvimento , Aspalathus/metabolismo , Aspalathus/microbiologia , Cyclopia (Planta)/crescimento & desenvolvimento , Cyclopia (Planta)/metabolismo , Cyclopia (Planta)/microbiologia , Fabaceae/metabolismo , Fabaceae/microbiologia
17.
Environ Microbiol ; 11(4): 762-78, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19040456

RESUMO

Bacteria isolated from Mimosa nodules in Taiwan, Papua New Guinea, Mexico and Puerto Rico were identified as belonging to either the alpha- or beta-proteobacteria. The beta-proteobacterial Burkholderia and Cupriavidus strains formed effective symbioses with the common invasive species Mimosa diplotricha, M. pigra and M. pudica, but the alpha-proteobacterial Rhizobium etli and R. tropici strains produced a range of symbiotic phenotypes from no nodulation through ineffective to effective nodulation, depending on Mimosa species. Competition studies were performed between three of the alpha-proteobacteria (R. etli TJ167, R. tropici NGR181 and UPRM8021) and two of the beta-rhizobial symbionts (Burkholderia mimosarum PAS44 and Cupriavidus taiwanensis LMG19424) for nodulation of these invasive Mimosa species. Under flooded conditions, B. mimosarum PAS44 out-competed LMG19424 and all three alpha-proteobacteria to the point of exclusion. This advantage was not explained by initial inoculum levels, rates of bacterial growth, rhizobia-rhizobia growth inhibition or individual nodulation rate. However, the competitive domination of PAS44 over LMG19424 was reduced in the presence of nitrate for all three plant hosts. The largest significant effect was for M. pudica, in which LMG19424 formed 57% of the nodules in the presence of 0.5 mM potassium nitrate. In this host, ammonium also had a similar, but lesser, effect. Comparable results were also found using an N-containing soil mixture, and environmental N levels are therefore suggested as a factor in the competitive success of the bacterial symbiont in vivo.


Assuntos
Alphaproteobacteria/isolamento & purificação , Alphaproteobacteria/fisiologia , Betaproteobacteria/isolamento & purificação , Betaproteobacteria/fisiologia , Mimosa/microbiologia , Nitrogênio/metabolismo , Simbiose , Alphaproteobacteria/classificação , Alphaproteobacteria/crescimento & desenvolvimento , Betaproteobacteria/classificação , Betaproteobacteria/crescimento & desenvolvimento , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Genes de RNAr , México , Papua Nova Guiné , Filogenia , Porto Rico , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico , Taiwan
18.
Environ Microbiol ; 11(10): 2510-25, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19555380

RESUMO

Concatenated sequence analysis with 16S rRNA, rpoB and fusA genes identified a bacterial strain (IRBG74) isolated from root nodules of the aquatic legume Sesbania cannabina as a close relative of the plant pathogen Rhizobium radiobacter (syn. Agrobacterium tumefaciens). However, DNA:DNA hybridization with R. radiobacter, R. rubi, R. vitis and R. huautlense gave only 44%, 5%, 8% and 8% similarity respectively, suggesting that IRBG74 is potentially a new species. Additionally, it contained no vir genes and lacked tumour-forming ability, but harboured a sym-plasmid containing nifH and nodA genes similar to those in other Sesbania symbionts. Indeed, IRBG74 effectively nodulated S. cannabina and seven other Sesbania spp. that nodulate with Ensifer (Sinorhizobium)/Rhizobium strains with similar nodA genes to IRBG74, but not species that nodulate with Azorhizobium or Mesorhizobium. Light and electron microscopy revealed that IRBG74 infected Sesbania spp. via lateral root junctions under flooded conditions, but via root hairs under non-flooded conditions. Thus, IRBG74 is the first confirmed legume-nodulating symbiont from the Rhizobium (Agrobacterium) clade. Cross-inoculation studies with various Sesbania symbionts showed that S. cannabina could form fully effective symbioses with strains in the genera Rhizobium and Ensifer, only ineffective ones with Azorhizobium strains, and either partially effective (Mesorhizobium huakii) or ineffective (Mesorhizobium plurifarium) symbioses with Mesorhizobium. These data are discussed in terms of the molecular phylogeny of Sesbania and its symbionts.


Assuntos
Rhizobium/genética , Nódulos Radiculares de Plantas/microbiologia , Sesbania/microbiologia , Aciltransferases/análise , Aciltransferases/genética , Proteínas de Bactérias/análise , Proteínas de Bactérias/genética , DNA Bacteriano/análise , DNA Bacteriano/genética , Fixação de Nitrogênio , Oxirredutases/análise , Oxirredutases/genética , Fator G para Elongação de Peptídeos/análise , Fator G para Elongação de Peptídeos/genética , Filogenia , Plasmídeos/análise , Plasmídeos/genética , RNA Ribossômico 16S/análise , RNA Ribossômico 16S/genética , Rhizobium/ultraestrutura , Nódulos Radiculares de Plantas/ultraestrutura , Alinhamento de Sequência , Análise de Sequência de DNA , Sesbania/ultraestrutura , Especificidade da Espécie , Simbiose
20.
J Exp Bot ; 59(5): 1081-4, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18209109

RESUMO

Current evidence suggests that legumes evolved about 60 million years ago. Genetic material for nodulation was recruited from existing DNA, often following gene duplication. The initial process of infection probably did not involve either root hairs or infection threads. From this initial event, two branched pathways of nodule developmental processes evolved, one involving and one not involving the development of infection threads to 'escort' bacteria to young nodule cells. Extant legumes have a wide range of nodule structures and at least 25% of them do not have infection threads. The latter have uniform infected tissue whereas those that have infection threads have infected cells interspersed with uninfected (interstitial) cells. Each type of nodule may develop indeterminately, with an apical meristem, or show determinate growth. These nodule structures are host determined and are largely congruent with taxonomic position. In addition to variation on the plant side, the last 10 years have seen the recognition of many new types of 'rhizobia', bacteria that can induce nodulation and fix nitrogen. It is not yet possible to fit these into the emerging pattern of nodule evolution.


Assuntos
Evolução Biológica , Fabaceae/microbiologia , Nódulos Radiculares de Plantas/microbiologia , Simbiose , Bactérias/isolamento & purificação , Fenômenos Fisiológicos Bacterianos , Fabaceae/crescimento & desenvolvimento , Morfogênese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA