Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Biophys J ; 106(6): 1349-58, 2014 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-24655510

RESUMO

The structure of the unusually long (∼100 amino-acid residues) N-terminal domain of the light-harvesting protein CP29 of plants is not defined in the crystal structure of this membrane protein. We studied the N-terminus using two electron paramagnetic resonance (EPR) approaches: the rotational diffusion of spin labels at 55 residues with continuous-wave EPR, and three sets of distances with a pulsed EPR method. The N-terminus is relatively structured. Five regions that differ considerably in their dynamics are identified. Two regions have low rotational diffusion, one of which shows α-helical character suggesting contact with the protein surface. This immobile part is flanked by two highly dynamic, unstructured regions (loops) that cover residues 10-22 and 82-91. These loops may be important for the interaction with other light-harvesting proteins. The region around residue 4 also has low rotational diffusion, presumably because it attaches noncovalently to the protein. This section is close to a phosphorylation site (Thr-6) in related proteins, such as those encoded by the Lhcb4.2 gene. Phosphorylation might influence the interaction with other antenna complexes, thereby regulating the supramolecular organization in the thylakoid membrane.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Cloroplastos/química , Simulação de Dinâmica Molecular , Ribonucleoproteínas/química , Sequência de Aminoácidos , Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Cloroplastos/genética , Dados de Sequência Molecular , Mutação , Estrutura Terciária de Proteína , Ribonucleoproteínas/genética
2.
Trends Biochem Sci ; 34(5): 249-55, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19362002

RESUMO

The major coat protein of the filamentous bacteriophage M13 is a surprising protein because it exists both as a membrane protein and as part of the M13 phage coat during its life cycle. Early studies showed that the phage-bound structure of the coat protein was a continuous I-shaped alpha-helix. However, throughout the years various structural models, both I-shaped and L-shaped, have been proposed for the membrane-bound state of the coat protein. Recently, site-directed labelling approaches have enabled the study of the coat protein under conditions that more closely mimic the in vivo membrane-bound state. Interestingly, the structure that has emerged from this work is I-shaped and similar to the structure in the phage-bound state.


Assuntos
Bacteriófago M13/metabolismo , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Sequência de Aminoácidos , Modelos Biológicos , Dados de Sequência Molecular , Conformação Proteica
3.
Biochim Biophys Acta ; 1788(10): 2217-21, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19715663

RESUMO

Knowledge about the vertical movement of a protein with respect to the lipid bilayer plane is important to understand protein functionality in the biological membrane. In this work, the vertical displacement of bacteriophage M13 major coat protein in a lipid bilayer is used as a model system to study the molecular details of its anchoring mechanism in a homologue series of lipids with the same polar head group but different hydrophobic chain length. The major coat proteins were reconstituted into 14:1PC, 16:1PC, 18:1PC, 20:1PC, and 22:1PC bilayers, and the fluorescence spectra were measured of the intrinsic tryptophan at position 26 and BADAN attached to an introduced cysteine at position 46, located at the opposite ends of the transmembrane helix. The fluorescence maximum of tryptophan shifted for 700 cm(-1) on going from 14:1PC to 22:1PC, the corresponding shift of the fluorescence maximum of BADAN at position 46 was approximately 10 times less ( approximately 70 cm(-1)). Quenching of fluorescence with the spin label CAT 1 indicates that the tryptophan is becoming progressively inaccessible for the quencher with increasing bilayer thickness, whereas quenching of BADAN attached to the T46C mutant remained approximately unchanged. This supports the idea that the BADAN probe at position 46 remains at the same depth in the bilayer irrespective of its thickness and clearly indicates an asymmetrical nature of the protein dipping in the lipid bilayer. The anchoring strength at the C-terminal domain of the protein (provided by two phenylalanine residues together with four lysine residues) was estimated to be roughly 5 times larger than the anchoring strength of the N-terminal domain.


Assuntos
Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Bicamadas Lipídicas/química , Proteínas do Capsídeo/genética , Interações Hidrofóbicas e Hidrofílicas , Bicamadas Lipídicas/metabolismo , Mutagênese Sítio-Dirigida , Mutação/genética , Espectrometria de Fluorescência , Marcadores de Spin
4.
Eur Biophys J ; 39(4): 647-56, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19760185

RESUMO

Profiles of lipid-water bilayer dynamics were determined from picosecond time-resolved fluorescence spectra of membrane-embedded BADAN-labeled M13 coat protein. For this purpose, the protein was labeled at seven key positions. This places the label at well-defined locations from the water phase to the center of the hydrophobic acyl chain region of a phospholipid model membrane, providing us with a nanoscale ruler to map membranes. Analysis of the time-resolved fluorescence spectroscopic data provides the characteristic time constant for the twisting motion of the BADAN label, which is sensitive to the local flexibility of the protein-lipid environment. In addition, we obtain information about the mobility of water molecules at the membrane-water interface. The results provide an unprecedented nanoscale profiling of the dynamics and distribution of water in membrane systems. This information gives clear evidence that the actual barrier of membranes for ions and aqueous solvents is located at the region of carbonyl groups of the acyl chains.


Assuntos
2-Naftilamina/análogos & derivados , Membrana Celular/química , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , 2-Naftilamina/metabolismo , Membrana Celular/metabolismo , Corantes Fluorescentes/metabolismo , Ligação de Hidrogênio , Processamento de Imagem Assistida por Computador , Luz , Proteínas de Membrana/genética , Modelos Moleculares , Solventes/química , Espectrometria de Fluorescência , Coloração e Rotulagem , Fatores de Tempo
5.
Eur Biophys J ; 39(4): 631-8, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19639311

RESUMO

A high-throughput Förster resonance energy transfer (FRET) study was performed on the approximately 100 amino acids long N-terminal domain of the photosynthetic complex CP29 of higher plants. For this purpose, CP29 was singly mutated along its N-terminal domain, replacing one-by-one native amino acids by a cysteine, which was labeled with a BODIPY fluorescent probe, and reconstituted with the natural pigments of CP9, chlorophylls and xanthophylls. Picosecond fluorescence experiments revealed rapid energy transfer (approximately 20-70 ps) from BODIPY at amino-acid positions 4, 22, 33, 40, 56, 65, 74, 90, and 97 to Chl a molecules in the hydrophobic part of the protein. From the energy transfer times, distances were estimated between label and chlorophyll molecules, using the Förster equation. When the label was attached to amino acids 4, 56, and 97, it was found to be located very close to the protein core (approximately 15 A), whereas labels at positions 15, 22, 33, 40, 65, 74, and 90 were found at somewhat larger distances. It is concluded that the entire N-terminal domain is in close contact with the hydrophobic core and that there is no loop sticking out into the stroma. Most of the results support a recently proposed topological model for the N-terminus of CP29, which was based on electron-spin-resonance measurements on spin-labeled CP29 with and without its natural pigment content. The present results lead to a slight refinement of that model.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Complexos de Proteínas Captadores de Luz/química , Complexo de Proteína do Fotossistema II/química , Substituição de Aminoácidos , Artefatos , Compostos de Boro/química , Corantes Fluorescentes/química , Complexos de Proteínas Captadores de Luz/genética , Fótons , Complexo de Proteína do Fotossistema II/genética , Probabilidade , Estrutura Terciária de Proteína , Fatores de Tempo
6.
Eur Biophys J ; 39(4): 541-50, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19680644

RESUMO

During recent decades, bacteriophages have been at the cutting edge of new developments in molecular biology, biophysics, and, more recently, bionanotechnology. In particular filamentous viruses, for example bacteriophage M13, have a virion architecture that enables precision building of ordered and defect-free two and three-dimensional structures on a nanometre scale. This could not have been possible without detailed knowledge of coat protein structure and dynamics during the virus reproduction cycle. The results of the spectroscopic studies conducted in our group compellingly demonstrate a critical role of membrane embedment of the protein both during infectious entry of the virus into the host cell and during assembly of the new virion in the host membrane. The protein is effectively embedded in the membrane by a strong C-terminal interfacial anchor, which together with a simple tilt mechanism and a subtle structural adjustment of the extreme end of its N terminus provides favourable thermodynamical association of the protein in the lipid bilayer. This basic physicochemical rule cannot be violated and any new bionanotechnology that will emerge from bacteriophage M13 should take this into account.


Assuntos
Inovirus/química , Inovirus/fisiologia , Nanotecnologia , Sequência de Aminoácidos , Biotecnologia , Membrana Celular/metabolismo , Inovirus/metabolismo , Dados de Sequência Molecular , Coloração e Rotulagem , Proteínas Virais/química , Proteínas Virais/metabolismo
7.
Biophys J ; 96(4): 1408-14, 2009 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-19217858

RESUMO

Bacteriophage M13 major coat protein was reconstituted in different nonmatching binary lipid mixtures composed of 14:1PC and 22:1PC lipid bilayers. Challenged by this lose-lose situation of hydrophobic mismatch, the protein-lipid interactions are monitored by CD and site-directed spin-label electron spin resonance spectroscopy of spin-labeled site-specific single cysteine mutants located in the C-terminal protein domain embedded in the hydrophobic core of the membrane (I39C) and at the lipid-water interface (T46C). The CD spectra indicate an overall alpha-helical conformation irrespective of the composition of the binary lipid mixture. Spin-labeled protein mutant I39C senses the phase transition in 22:1PC, in contrast to spin-labeled protein mutant T46C, which is not affected by the transition. The results of both CD and electron spin resonance spectroscopy clearly indicate that the protein preferentially partitions into the shorter 14:1PC both above and below the gel-to-liquid crystalline phase transition temperature of 22:1PC. This preference is related to the protein tilt angle and energy penalty the protein has to pay in the thicker 22:1PC. Given the fact that in Escherichia coli, which is the host for M13 bacteriophage, it is easier to find shorter 14 carbon acyl chains than longer 22 carbon acyl chains, the choice the M13 coat protein makes seems to be evolutionary justified.


Assuntos
Proteínas do Capsídeo/química , Bicamadas Lipídicas/química , Bacteriófago M13 , Proteínas do Capsídeo/genética , Espectroscopia de Ressonância de Spin Eletrônica , Interações Hidrofóbicas e Hidrofílicas , Mutação , Estrutura Terciária de Proteína , Temperatura
8.
Biophys J ; 96(9): 3620-8, 2009 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-19413967

RESUMO

The topology of the long N-terminal domain (approximately 100 amino-acid residues) of the photosynthetic Lhc CP29 was studied using electron spin resonance. Wild-type protein containing a single cysteine at position 108 and nine single-cysteine mutants were produced, allowing to label different parts of the domain with a nitroxide spin label. In all cases, the apoproteins were either solubilized in detergent or they were reconstituted with their native pigments (holoproteins) in vitro. The spin-label electron spin resonance spectra were analyzed in terms of a multicomponent spectral simulation approach, based on hybrid evolutionary optimization and solution condensation. These results permit to trace the structural organization of the long N-terminal domain of CP29. Amino-acid residues 97 and 108 are located in the transmembrane pigment-containing protein body of the protein. Positions 65, 81, and 90 are located in a flexible loop that is proposed to extend out of the protein from the stromal surface. This loop also contains a phosphorylation site at Thr81, suggesting that the flexibility of this loop might play a role in the regulatory mechanisms of the light-harvesting process. Positions 4, 33, 40, and 56 are found to be located in a relatively rigid environment, close to the transmembrane protein body. On the other hand, position 15 is located in a flexible region, relatively far away from the transmembrane domain.


Assuntos
Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/metabolismo , Complexo de Proteína do Fotossistema II/química , Complexo de Proteína do Fotossistema II/metabolismo , Conformação Proteica , Apoproteínas/genética , Apoproteínas/metabolismo , Arabidopsis , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Carotenoides/metabolismo , Simulação por Computador , Espectroscopia de Ressonância de Spin Eletrônica , Escherichia coli , Complexos de Proteínas Captadores de Luz/genética , Modelos Biológicos , Mutagênese Sítio-Dirigida , Mutação , Complexo de Proteína do Fotossistema II/genética , Spinacia oleracea
9.
Biophys J ; 94(10): 3945-55, 2008 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-18234831

RESUMO

The work presented here describes a new and simple method based on site-directed fluorescence labeling using the BADAN label that permits the examination of protein-lipid interactions in great detail. We applied this technique to a membrane-embedded, mainly alpha-helical reference protein, the M13 major coat protein. Using a high-throughput approach, 40 site-specific cysteine mutants were prepared of the 50-residues long protein. The steady-state fluorescence spectra were analyzed using a three-component spectral model that enabled the separation of Stokes shift contributions from water and internal label dynamics, and protein topology. We found that most of the fluorescence originated from BADAN labels that were hydrogen-bonded to water molecules even within the hydrophobic core of the membrane. Our spectral decomposition method revealed the embedment and topology of the labeled protein in the membrane bilayer under various conditions of headgroup charge and lipid chain length, as well as key characteristics of the membrane such as hydration level and local polarity, provided by the local dielectric constant.


Assuntos
2-Naftilamina/análogos & derivados , Cristalografia/métodos , Bicamadas Lipídicas/química , Proteínas de Membrana/química , Proteínas de Membrana/ultraestrutura , Técnicas de Sonda Molecular , Espectrometria de Fluorescência/métodos , 2-Naftilamina/química , Simulação por Computador , Modelos Químicos , Modelos Moleculares , Conformação Proteica
10.
PLoS One ; 13(6): e0198990, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29906280

RESUMO

D-amino acid oxidase (DAAO) degrades D-amino acids to produce α-ketoacids, hydrogen peroxide and ammonia. DAAO has often been investigated and engineered for industrial and clinical applications. We combined information from literature with a detailed analysis of the structure to engineer mammalian DAAOs. The structural analysis was complemented with molecular dynamics simulations to characterize solvent accessibility and product release mechanisms. We identified non-obvious residues located on the loops on the border between the active site and the secondary binding pocket essential for pig and human DAAO substrate specificity and activity. We engineered DAAOs by mutating such critical residues and characterised the biochemical activity of the resulting variants. The results highlight the importance of the selected residues in modulating substrate specificity, product egress and enzyme activity, suggesting further steps of DAAO re-engineering towards desired clinical and industrial applications.


Assuntos
Sítios de Ligação/genética , D-Aminoácido Oxidase/química , Mutagênese Sítio-Dirigida , Solventes/química , Biotecnologia/métodos , D-Aminoácido Oxidase/genética , Ensaios Enzimáticos/métodos , Especificidade por Substrato
11.
Chem Phys Lipids ; 141(1-2): 83-93, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16620800

RESUMO

Bacteriophage M13 major coat protein is extensively used as a biophysical, biochemical, and molecular biology reference system for studying membrane proteins. The protein has several elements that control its position and orientation in a lipid bilayer. The N-terminus is dominated by the presence of negatively charged amino acid residues (Glu2, Asp4, and Asp5), which will always try to extend into the aqueous phase and therefore act as a hydrophilic anchor. The amphipathic and the hydrophobic transmembrane part contain the most important hydrophobic anchoring elements. In addition there are specific aromatic and charged amino acid residues in these domains (Phe 11, Tyr21, Tyr24, Trp26, Phe42, Phe45, Lys40, Lys43, and Lys44) that fine-tune the association of the protein to the lipid bilayer. The interfacial Tyr residues are important recognition elements for precise protein positioning, a function that cannot be performed optimally by residues with an aliphatic character. The Trp26 anchor is not very strong: depending on the context, the tryptophan residue may move in or out of the membrane. On the other hand, Lys residues and Phe residues at the C-terminus of the protein act in a unique concerted action to strongly anchor the protein in the lipid bilayer.


Assuntos
Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Aminoácidos/química , Aminoácidos/genética , Proteínas do Capsídeo/genética , Membrana Celular/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Conformação Proteica , Estrutura Secundária de Proteína , Tirosina/química , Tirosina/genética
12.
Biochim Biophys Acta ; 1611(1-2): 5-15, 2003 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-12659940

RESUMO

During the past years, remarkable progress has been made in our understanding of the replication cycle of bacteriophage M13 and the molecular details that enable phage proteins to navigate in the complex environment of the host cell. With new developments in molecular membrane biology in combination with spectroscopic techniques, we are now in a position to ask how phages carry out this delicate process on a molecular level, and what sort of protein-lipid and protein-protein interactions are involved. In this review we will focus on the molecular details of the protein-protein and protein-lipid interactions of the major coat protein (gp8) that may play a role during the infection of Escherichia coli by bacteriophage M13.


Assuntos
Bacteriófago M13/metabolismo , Escherichia coli/metabolismo , Metabolismo dos Lipídeos , Proteínas do Core Viral/metabolismo , Sequência de Aminoácidos , Bacteriófago M13/química , Bacteriófago M13/patogenicidade , Cristalografia , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica
13.
Biochim Biophys Acta ; 1594(1): 54-63, 2002 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-11825608

RESUMO

The structural properties of bacteriophage M13 during disassembly were studied in different membrane model systems, composed of a homologue series of the detergents sodium octyl sulfate, sodium decyl sulfate, and sodium dodecyl sulfate. The structural changes during phage disruption were monitored by spin-labeled electron spin resonance (ESR) and circular dichroism spectroscopy. For the purpose of ESR spectroscopy the major coat protein mutants V31C and G38C were site-directed spin labeled in the intact phage particle. These mutants were selected because the mutated sites are located in the hydrophobic part of the protein, and provide good reporting locations for phage integrity. All amphiphiles studied were capable of phage disruption. However, no significant phage disruption was detected below the critical micelle concentration of the amphiphile used. Based on this finding and the linear dependence of phage disruption by amphiphiles on the phage concentration, it is suggested that the solubilization of the proteins of the phage coat by amphiphiles starts with an attachment to and penetration of amphiphile molecules into the phage particle. The amphiphile concentration in the phage increases in proportion to the amphiphile concentration in the aqueous phase. Incorporation of the amphiphile in the phage particle is accompanied with a change in local mobility of the spin-labeled part of the coat protein and its secondary structure. With increasing the amphiphile concentration in the phage particle, a concentration is reached where the concentration of the amphiphile in the aqueous phase is around its critical micelle concentration. A further increase in amphiphile concentration results in massive phage disruption. Phage disruption by amphiphiles appears to be dependent on the phage coat mutations. It is concluded that phage disruption is dependent on a hydrophobic effect, since phage solubilization could significantly be increased by keeping the hydrophilic part of the amphiphile constant, while increasing its hydrophobic part.


Assuntos
Bacteriófago M13/química , Tensoativos/química , Capsídeo/química , Dicroísmo Circular , Espectroscopia de Ressonância de Spin Eletrônica , Soluções , Marcadores de Spin
14.
Methods Mol Biol ; 1129: 211-29, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24648080

RESUMO

In current purification processes optimization of the capture step generally has a large impact on cost reduction. At present, valuable biomolecules are often produced in relatively low concentrations and, consequently, the eventual selective separation from complex mixtures can be rather inefficient. A separation technology based on a very selective high-affinity binding may overcome these problems. Proteins in their natural environment manifest functionality by interacting specifically and often with relatively high affinity with other molecules, such as substrates, inhibitors, activators, or other proteins. At present, antibodies are the most commonly used binding proteins in numerous applications. However, antibodies do have limitations, such as high production costs, low stability, and a complex patent landscape. A novel approach is therefore to use non-immunoglobulin engineered binding proteins in affinity purification. In order to obtain engineered binders with a desired specificity, a large mutant library of the new to-be-developed binding protein has to be created and screened for potential binders. A powerful technique to screen and select for proteins with desired properties from a large pool of variants is phage display. Here, we indicate several criteria for potential binding protein scaffolds and explain the principle of M13 phage display. In addition, we describe experimental protocols for the initial steps in setting up a M13 phage display system based on the pComb3X vector, including construction of the phagemid vector, production of phages displaying the protein of interest, and confirmation of display on the M13 phage.


Assuntos
Bacteriófago M13/genética , Proteínas Recombinantes/genética
15.
Talanta ; 84(2): 341-6, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21376955

RESUMO

The analytical performance of the newly proposed laser-based photoacoustic spectroscopy (PAS) and of optothermal window (OW) method for quantification of total anthocyanin concentration (TAC) in five sour cherry varieties is compared to that of the spectrophotometry (SP). High performance liquid chromatography (HPLC) was used to identify and quantify specific anthocyanins. Both, PAS and OW are direct methods that unlike SP and HPLC obviate the need for the extraction of analyte. The outcome of the study leads to the conclusion that PAS and OW are both suitable for quick screening of TAC in sour cherries. The correlation between the two methods and SP is linear with R(2)=0.9887 for PAS and R(2)=0.9918 for OW, respectively. Both methods are capable of the rapid determination of TAC in sour cherries without a need for a laborious sample pretreatment.


Assuntos
Antocianinas/análise , Fotoquímica/métodos , Prunus/química , Temperatura , Acústica , Cromatografia Líquida de Alta Pressão , Análise Espectral/métodos
16.
Food Biophys ; 6(1): 12-19, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21423327

RESUMO

This study describes the application of the laser photoacoustic spectroscopy (PAS) for quantification of total carotenoids (TC) in corn flours and sweetpotato flours. Overall, thirty-three different corn flours and nine sweetpotato flours were investigated. All PAS measurements were performed at room temperature using 488-nm argon laser radiation for excitation and mechanical modulation of 9 and 30 Hz. The measurements were repeated within a run and within several days or months. The UV-Vis spectrophotometry was used as the reference method. The concentration range that allows for the reliable analysis of TC spans a region from 1 to 40 mg kg(-1) for corn flours and from 9 to 40 mg kg(-1) for sweetpotato flours. In the case of sweetpotato flours, the quantification may extend even to 240 mg kg(-1) TC. The estimated detection limit values for TC in corn and sweetpotato flours were 0.1 and 0.3 mg kg(-1), respectively. The computed repeatability (n = 3-12) and intermediate precision (n = 6-28) RSD values at 9 and 30 Hz are comparable: 0.1-17.1% and 5.3-14.7% for corn flours as compared with 1.4-9.1% and 4.2-23.0% for sweetpotato flours. Our results show that PAS can be successfully used as a new analytical tool to simply and rapidly screen the flours for their nutritional potential based on the total carotenoid concentration.

17.
Biophys J ; 93(10): 3541-7, 2007 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-17704180

RESUMO

The structure of a membrane-embedded alpha-helical reference protein, the M13 major coat protein, is characterized under different conditions of hydrophobic mismatch using fluorescence resonance energy transfer in combination with high-throughput mutagenesis. We show that the structure is similar in both thin (14:1) and thick (20:1) phospholipid bilayers, indicating that the protein does not undergo large structural rearrangements in response to conditions of hydrophobic mismatch. We introduce a "helical fingerprint" analysis, showing that amino acid residues 1-9 are unstructured in both phospholipid bilayers. Our findings indicate the presence of pi-helical domains in the transmembrane segment of the protein; however, no evidence is found for a structural adaptation to the degree of hydrophobic mismatch. In light of current literature, and based on our data, we conclude that aggregation (at high protein concentration) and adjustment of the tilt angle and the lipid structure are the dominant responses to conditions of hydrophobic mismatch.


Assuntos
Quinase de Cadeia Leve de Miosina/química , Fragmentos de Peptídeos/química , Aminoácidos/química , Membrana Celular/metabolismo , Cisteína/química , Lipídeos/química , Microscopia de Fluorescência , Modelos Moleculares , Modelos Estatísticos , Conformação Molecular , Mutagênese , Mutação , Fosfolipídeos/química , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
18.
Biophys J ; 91(9): 3341-8, 2006 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-16905615

RESUMO

Site-directed mutagenesis was used to produce 27 single cysteine mutants of bacteriophage M13 major coat protein spanning the whole primary sequence of the protein. Single-cysteine mutants were labeled with nitroxide spin labels and incorporated into phospholipid bilayers with increasing acyl chain length. The SDSL is combined with ESR and CD spectroscopy. CD spectroscopy provided information about the overall protein conformation in different mismatching lipids. The spin label ESR spectra were analyzed in terms of a new spectral simulation approach based on hybrid evolutionary optimization and solution condensation. This method gives the residue-level free rotational space (i.e., the effective space within which the spin label can wobble) and the diffusion constant of the spin label attached to the protein. The results suggest that the coat protein has a large structural flexibility, which facilitates a stable protein-to-membrane association in lipid bilayers with various degrees of hydrophobic mismatch.


Assuntos
Proteínas do Capsídeo/química , Proteínas do Capsídeo/ultraestrutura , Modelos Químicos , Modelos Moleculares , Substituição de Aminoácidos , Dicroísmo Circular/métodos , Simulação por Computador , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Movimento (Física) , Mutagênese Sítio-Dirigida , Conformação Proteica , Marcadores de Spin , Relação Estrutura-Atividade
19.
Anal Chem ; 78(15): 5296-301, 2006 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-16878862

RESUMO

ESR (or EPR) spectroscopy on spin-labeled site-directed cysteine mutants is ideally suited for structural studies of membrane proteins due to its high sensitivity and its low demands with respect to sample purity and preparation. Many features can be inferred from the spectral line shape of an ESR spectrum, but the analysis of ESR spectra is complicated when multiple sites with different line shapes are present. Here, we present a method to decompose the spectrum of a doubly labeled peptide that is composed of a singly labeled, noninteracting component and a doubly labeled, dipolar-broadened component using a combination of optical and matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry. The effect on the interspin distance calculation based on the dipolar broadening is quantified and discussed.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica/métodos , Peptídeos/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Peptídeos/síntese química , Sensibilidade e Especificidade , Espectrofotometria Ultravioleta
20.
J Chem Inf Model ; 45(6): 1621-7, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16309264

RESUMO

Molecular modeling based on a hybrid evolutionary optimization and an information condensation algorithm, called GHOST, of spin label ESR spectra was applied to study the structure and dynamics of membrane proteins. The new method is capable of providing detailed molecular information about the conformational space of the spin-labeled segment of the protein in a membrane system. The method is applied to spin-labeled bacteriophage M13 major coat protein, which is used as a model membrane protein. Single cysteine mutants of the coat protein were labeled with nitroxide spin labels and incorporated in 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) bilayers. The new computational method allows us to monitor distributions of local spatial constraints and molecular mobility, in addition to information about the location of the protein in a membrane. Furthermore, the results suggest that different local conformations may coexist in the membrane protein. The knowledge of different local conformations may help us to better understand the function-structure relationship of membrane proteins.


Assuntos
Proteínas de Membrana/química , Algoritmos , Aminoácidos/química , Espectroscopia de Ressonância de Spin Eletrônica , Bicamadas Lipídicas , Modelos Moleculares , Modelos Estatísticos , Conformação Molecular , Oxigênio/química , Fosfatidilcolinas/química , Conformação Proteica , Soluções , Marcadores de Spin
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA