Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Small ; 13(2)2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27797144

RESUMO

Hexagonal boron nitride (h-BN) nanosheets are synthesized through a facile shear force liquid phase exfoliation method and their use as a binder-free oxidation and fire-resistant wood coating is demonstrated. Characterized by intrinsic low thermal diffusivity and thermal effusivity, h-BN nanosheet coatings show an excellent fire resistance and oxidation resistance up to 900 °C in air.

2.
J Am Chem Soc ; 136(38): 13233-9, 2014 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-25199066

RESUMO

Design of selective sensors for a specific analyte in blood serum, which contains a large number of proteins, small molecules, and ions, is important in clinical diagnostics. While metal and polymeric nanoparticle conjugates have been used as sensors, small molecular assemblies have rarely been exploited for the selective sensing of a protein in blood serum. Herein we demonstrate how a nonspecific small molecular fluorescent dye can be empowered to form a selective protein sensor as illustrated with a thiol-sensitive near-IR squaraine (Sq) dye (λabs= 670 nm, λem= 700 nm). The dye self-assembles to form nonfluorescent nanoparticles (Dh = 200 nm) which selectively respond to human serum albumin (HSA) in the presence of other thiol-containing molecules and proteins by triggering a green fluorescence. This selective response of the dye nanoparticles allowed detection and quantification of HSA in blood serum with a sensitivity limit of 3 nM. Notably, the Sq dye in solution state is nonselective and responds to any thiol-containing proteins and small molecules. The sensing mechanism involves HSA specific controlled disassembly of the Sq nanoparticles to the molecular dye by a noncovalent binding process and its subsequent reaction with the thiol moiety of the protein, triggering the green emission of a dormant fluorophore present in the dye. This study demonstrates the power of a self-assembled small molecular fluorophore for protein sensing and is a simple chemical tool for the clinical diagnosis of blood serum.


Assuntos
Ciclobutanos/química , Corantes Fluorescentes/química , Nanopartículas/química , Fenóis/química , Albumina Sérica/análise , Compostos de Sulfidrila/química , Humanos , Raios Infravermelhos , Modelos Moleculares , Espectrometria de Fluorescência
3.
J Am Chem Soc ; 134(42): 17346-9, 2012 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-22799451

RESUMO

Squaraine dyes were loaded inside mesoporous silica nanoparticles, and the nanoparticle surfaces were then wrapped with ultrathin graphene oxide sheets, leading to the formation of a novel hybrid material. The hybrid exhibits remarkable stability and can efficiently protect the loaded dye from nucleophilic attack. The biocompatible hybrid is noncytotoxic and presents significant potential for application in fluorescence imaging in vitro.


Assuntos
Técnicas Biossensoriais , Ciclobutanos/química , Grafite/química , Nanopartículas/química , Óxidos/química , Fenóis/química , Dióxido de Silício/química , Materiais Biocompatíveis/química , Corantes Fluorescentes/química , Grafite/síntese química , Células HeLa , Humanos , Microscopia de Fluorescência , Óxidos/síntese química , Porosidade , Propriedades de Superfície
4.
Photochem Photobiol Sci ; 11(11): 1715-23, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22875072

RESUMO

The excited state intra molecular charge transfer (ICT) property of fluorophores has been extensively used for the design of fluorescent chemosensors. Herein, we report the synthesis and properties of three donor­π-acceptor­π-donor (D­π-A­π-D) based molecular probes BP, BT and BA. Two heteroaromatic rings, pyrrole (BP), and thiophene (BT) and a non-heteroaromatic ring N-alkoxy aniline (BA) were selected as donor moieties which were linked to a bipyridine binding site through a vinylic linkage. The heteroaromatic systems BP and BT perform selective and ratiometric emission signalling for zinc ions whereas the non-heteroaromatic probe BA does not. The advantages of the D­π-A­π-D design strategy in the design of ICT based probes for the selective fluorescent ratiometric signalling of zinc ions in biological media is discussed. Further, the use of BP, BT and BA for imaging Zn(2+) ions from MCF-7 cell lines is demonstrated.


Assuntos
Corantes Fluorescentes/química , Microscopia de Fluorescência , Zinco/análise , Aminas/química , Humanos , Concentração de Íons de Hidrogênio , Íons/química , Células MCF-7 , Pirróis/química , Teoria Quântica , Espectrometria de Fluorescência , Tiofenos/química
5.
J Alzheimers Dis Rep ; 5(1): 805-813, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34870106

RESUMO

BACKGROUND: micro-RNAs (miRNAs) are stable, small, non-coding RNAs enriched in exosomes. Their variation in levels according to different disease etiologies have made them a promising diagnostic biomarker for neurodegenerative diseases such as Alzheimer's disease (AD). Altered expression of miR-320a, miR-328-3p, and miR-204-5p have been reported in AD and frontotemporal dementia (FTD). OBJECTIVE: To determine their reliability, we aimed to examine the expression of three exosomal miRNAs isolated from cerebrospinal fluid (CSF) of patients with young-onset AD and FTD (< 65 years), correlating with core AD biomarkers and cognitive scores. METHODS: Exosomes were first isolated from CSF samples of 48 subjects (8 controls, 28 AD, and 12 FTD), followed by RNA extraction and quantitative PCR to measure the expression of miR-320a, miR-328-3p, and miR-204-5p. RESULTS: Expression of all three markers (miR-320a (p = 0.005), miR-328-3p (p = 0.049), and miR-204-5p (p = 0.036)) were significantly lower in AD versus controls. miR-320a was reduced in FTD versus controls (p = 0.049) and miR-328-3p was lower in AD versus FTD (p = 0.054). Notably, lower miR-328-3p levels could differentiate AD from FTD and controls with an AUC of 0.702, 95% CI: 0.534- 0.870, and showed significant correlation with lower CSF Aß42 levels (r = 0.359, p = 0.029). Pathway enrichment analysis identified potential targets of miR-328-3p implicated in the AMPK signaling pathway linked to amyloid-ß and tau metabolism in AD. CONCLUSION: Overall, we demonstrated miR-320a and miR-204-5p as reliable biomarkers for AD and FTD and report miR-328-3p as a novel AD biomarker.

6.
Small Methods ; 5(2): e2000751, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34927885

RESUMO

Efficient bifunctional electrocatalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are required for metal air batteries, to replace costly metals, such as Pt and Ir/Ru based compounds, which are typically used as benchmarks for ORR and OER, respectively. Isolated single atomic sites coordinated with nitrogen on carbon supports (M-N-C) have promising performance for replacement of precious metal catalysts. However, most of monometallic M-N-C catalysts demonstrate unsatisfactory bifunctional performance. Herein, a facile way of preparing bimetallic Fe and Co sites entrapped in nitrogen-doped hollow carbon nanospheres (Fe,Co-SA/CS) is explored, drawing on the unique structure and pore characteristics of Zeolitic imidazole frameworks and molecular size of Ferrocene, an Fe containing species. Fe,Co-SA/CS showed an ORR onset potential and half wave potential of 0.96 and 0.86 V, respectively. For OER, (Fe,Co)-SA/CS attained its anodic current density of 10 mA cm-2 at an overpotential of 360 mV. Interestingly, the oxygen electrode activity (ΔE) for (Fe,Co)-SA/CS and commercial Pt/C-RuO2 is calculated to be 0.73 V, exhibiting the bifunctional catalytic activity of (Fe,Co)-SA/CS. (Fe,Co)-SA/CS evidenced desirable specific capacity and cyclic stability than Pt/C-RuO2 mixture when utilized as an air cathode in a homemade Zinc-air battery.

7.
ACS Appl Mater Interfaces ; 11(43): 39798-39808, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31613589

RESUMO

Generally, a cost-effective electrocatalytic process that offers an efficient electrochemical energy conversion and storage necessitates a rational design and selection of structure as well as composition of active catalytic centers. Herein, we achieved an unprecedented surface morphology and shape tuning to obtain hollow NiCo2Px with a continuum of active sharp edges (spiked) on a hollow spherical surface by means of facile hydrothermal treatments. The highly exposed, branched spike-covered hollow structure of NiCo2Px shows remarkable performance enhancement for hydrogen evolution reaction and oxygen evolution reaction in a wide range of Ph solutions. This catalytic performance was utilized to assemble a water electrolyzer working in an alkaline environment. In particular, this electrolyzer only requires an output voltage of 1.62 V to deliver a current density of 10 mA cm-2 and shows almost no decrease in this value even after a continuous run for 50 h. The new surface-engineered NiCo2Px establishes to be highly active, cost-effective, and robust toward electrochemical energy conversion. Additionally, the charge storage capabilities of spike-covered hollow NiCo2Px structures is also investigated, and it shows a specific capacitance of 682 and 608 F g-1 at a current density of 1 A g-1 with excellent rate capacitance retention. Thus, the importance of surface engineering of nanocrystalline morphologies in design toward the development of a multifunctional electrocatalyst for efficient water splitting and charge storage applications is demonstrated.

8.
ACS Appl Mater Interfaces ; 11(22): 20082-20090, 2019 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-31083921

RESUMO

The increasing energy demands have prompted research on conversion and alloying materials, offering high lithium and sodium storage capacities. However, most of these materials suffer from huge volume expansion and degradation over the thousands of charging and discharging cycles required for commercial applications. In this study, we demonstrate a facile route to synthesize FeSbO4 nanocrystals that possess theoretical lithium and sodium storage capacity of 1220 mAh g-1. Operando X-ray diffraction studies reveal the electrochemically induced amorphization of the nanocrystals upon alkali-ion storage. We achieved specific storage capacities of ∼600 mAh g-1 for lithium and ∼300 mAh g-1 for sodium, respectively. The disparity in the lithium and sodium electrochemistry arises from the unique lithiation/sodiation pathways adopted by the nanocrystals. This study offers new insights into the chemistry and mechanism of conversion- and alloying-based energy storage materials that would greatly assist the development of next-generation active materials for energy storage.

9.
ACS Appl Mater Interfaces ; 11(5): 4867-4875, 2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30624893

RESUMO

Rapid surface functionalization of nanomaterials using covalent linkage following "green chemistry" remains challenging, and the quest for developing simple protocols is persisting. We report a nanomechanical microfluidic approach for the coupling of allenamide functionalized organic derivatives on the surface of thiol-modified silica nanoparticles using allenamide-thiol chemistry. The coupling principle involves the use of a microfluidic surface acoustic wave device that generates acoustic streaming-based chaotic fluid micromixing that enables mixing of laterally flowing fluids containing active components. This approach was used to demonstrate the direct surface labeling of thiol-modified silica nanoparticles using a selected group of modified fluorescent tags containing allenamide handles and achieved a total labeling efficiency of 83-90%. This green approach enabled a highly efficient surface functionalization under aqueous conditions, with tunable control over the conjugation process via the applied field. The dye-labeled silica particles were characterized using various analytical techniques and found to be biocompatible with potential in live cell bioimaging. It is envisaged that this bioconjugation strategy will find numerous applications in the field of bioimaging and drug delivery.


Assuntos
Técnicas Analíticas Microfluídicas/instrumentação , Microscopia Confocal/instrumentação , Nanopartículas/química , Dióxido de Silício/química , Compostos de Sulfidrila/química , Amidas/química , Linhagem Celular Tumoral , Desenho de Equipamento , Humanos , Técnicas Analíticas Microfluídicas/métodos , Propriedades de Superfície
10.
Chem Commun (Camb) ; (25): 2903-5, 2008 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-18566719

RESUMO

A pyrrole end-capped bipyridyl ligand incorporating a chiral handle exhibited high solid-state emission when compared to the achiral analogue 1b and to the racemic molecule 1c which allowed the design of a reusable fluorescent probe for the selective detection of Zn2+ under aqueous conditions.


Assuntos
2,2'-Dipiridil/química , Corantes Fluorescentes/química , Zinco/química , Cátions/química , Dicroísmo Circular , Estrutura Molecular , Fotoquímica , Estereoisomerismo
11.
Nat Commun ; 9(1): 369, 2018 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-29371614

RESUMO

The concept of point of darkness has received much attention for biosensing based on phase-sensitive detection and perfect absorption of light. The maximum phase change is possible at the point of darkness where the reflection is almost zero. To date, this has been experimentally realized using different material systems through the concept of topological darkness. However, complex nanopatterning techniques are required to realize topological darkness. Here, we report an approach to realize perfect absorption and extreme phase singularity using a simple metal-dielectric multilayer thin-film stack. The multilayer stack works on the principle of an asymmetric Fabry-Perot cavity and shows an abrupt phase change at the reflectionless point due to the presence of a highly absorbing ultrathin film of germanium in the stack. In the proof-of-concept phase-sensitive biosensing experiments, we functionalize the film surface with an ultrathin layer of biotin-thiol to capture streptavidin at a low concentration of 1 pM.


Assuntos
Técnicas Biossensoriais/métodos , Metais/química , Biotina/química , Estreptavidina/química
12.
ACS Appl Mater Interfaces ; 10(41): 34991-34999, 2018 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-30226753

RESUMO

The development of various plasmonic nanoporous materials has attracted much interest in different areas of research including bioengineering and biosensing because of their large surface area and versatile porous structure. Here, we introduce a novel technique for fabricating silver-stibnite nanoporous plasmonic films. Unlike conventional techniques that are usually used to fabricate nanoporous plasmonic films, we use a room-temperature growth method that is wet-chemistry free, which enables wafer-scale fabrication of nanoporous films on flexible substrates. We show the existence of propagating surface plasmon polaritons in nanoporous films and demonstrate the extreme bulk refractive index sensitivity of the films using the Goos-Hänchen shift interrogation scheme. In the proof-of-concept biosensing experiments, we functionalize the nanoporous films with biotin-thiol using a modified functionalization technique, to capture streptavidin. The fractal nature of the films increases the overlap between the local field and the immobilized biomolecules. The extreme sensitivity of the Goos-Hänchen shift allows femtomolar concentrations of streptavidin to be detected in real time, which is unprecedented using surface plasmons excited via the Kretschmann configuration.


Assuntos
Membranas Artificiais , Nanoporos , Prata/química , Ressonância de Plasmônio de Superfície/métodos , Biotina , Estreptavidina/química , Compostos de Sulfidrila/química
14.
ACS Appl Mater Interfaces ; 9(45): 39399-39406, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29090906

RESUMO

Owing to the high theoretical sodiation capacities, intermetallic alloy anodes have attracted considerable interest as electrodes for next-generation sodium-ion batteries (SIBs). Here, we demonstrate the fabrication of intermetallic Fe-Sb alloy anode for SIBs via a high-throughput and industrially viable melt-spinning process. The earth-abundant and low-cost Fe-Sb-based alloy anode exhibits excellent cycling stability with nearly 466 mAh g-1 sodiation capacity at a specific current of 50 mA g-1 with 95% capacity retention after 80 cycles. Moreover, the alloy anode displayed outstanding rate performance with ∼300 mAh g-1 sodiation capacity at 1 A g-1. The crystalline features of the melt-spun fibers aid in the exceptional electrochemical performance of the alloy anode. Further, the feasibility of the alloy anode for real-life applications was demonstrated in a sodium-ion full-cell configuration which could deliver a sodiation capacity of over 300 mAh g-1 (based on anode) at 50 mA g-1 with more than 99% Coulombic efficiency. The results further exhort the prospects of melt-spun alloy anodes to realize fully functional sodium-ion batteries.

15.
Nanoscale ; 9(40): 15356-15361, 2017 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-28831487

RESUMO

Silver nanoprisms (AgNPrs) exhibit localized surface plasmon resonance (LSPR) in the near infrared (NIR) region of the electromagnetic spectrum. LSPR-driven electric field enhancement around AgNPr edges has been investigated in various studies. A coating of dielectric materials such as silica on the surface of the AgNPrs is employed to extend the application of these nanoparticles under biocompatible conditions and to increase the thermal stability. Upon interactions with optical excitation (pulsed laser excitation), the AgNPrs undergo light intensity field enhancement (LIFE) at the corners. In the cases of hybrid hetero-structures of AgNPrs with silica coatings (AgNPr@SiO2), LIFE leads to nano-structural deformations. In this study, we demonstrate that, depending on the intensity of the light excitation, the medium properties and the geometrical sharpness of the corners of the prisms, LIFE could induce localized damage or abrasion at the edges of the immediate dielectric contact, which in this case was the silica coating. A theoretical study was conducted to establish the influence of the finite radius of curvature (ROC) of the corners on the plasmonic interactions to generate LIFE during optical excitation. Experiments were performed on AgNPr@SiO2 using nanosecond pulsed laser excitation at 900 nm and electron microscopic analysis of the nanostructures revealed the localized edge abrasion of the silica at the prism corners. To further study the effect of the direct plasmonic excitation during LIFE, pulsed laser excitation on ultra-thin graphene oxide (GO) wrapped AgNPr@SiO2 (GO-AgNPr@SiO2) was conducted. Due to the GO wrapping and subsequent changes in light absorption, the extent of the LIFE at the corners diminishes, which leads to structural stability and preservation of the hetero-structure morphology.

16.
ACS Macro Lett ; 6(11): 1212-1216, 2017 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-35650797

RESUMO

Ring-opening metathesis polymerization (ROMP) of buckybowl corannulene-based oxa-norbornadiene monomer is shown to give rise to polymeric nanomaterials with an average pore size of about 1.4 nm and a surface area of 49.2 m2/g. Application in supercapacitor devices show that the corannulene-based nanomaterials exhibit a specific capacitance of 134 F·g-1 (1.0 V voltage window) in a three-electrode cell configuration. Moreover, the electrode assembled from these materials in a symmetric configuration (1.6 V voltage window) exhibits long-term cyclability of 90% capacitance retention after undergoing 10000 cycles. This work demonstrates that ROMP is a valuable method in synthesizing nanostructured corannulene polymers, and that materials based on the nonplanar polycyclic aromatic motif represents an attractive active component for fabrication of devices targeted at electrochemical energy storage applications.

17.
Nanoscale ; 8(16): 8547-52, 2016 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-26695727

RESUMO

Photoactive materials that are triggered by the irradiation of light to generate an electrical response provide an ecofriendly platform to afford efficient power sources and switches. A chemical assembly of well-known elements with aligned carbon nanotube bundles is reported here, which was employed to form an efficient photo-induced charge transfer device. The primary elements of this device are ultra-long multi-walled carbon nanotube (MWCNT) bundles, polyaniline (PANI) thin film coating, and CdSe quantum dots (QDs). Highly ordered and horizontally aligned MWCNT bundles were coated with PANI to enhance charge transfer properties of active QDs in this platform. The obtained device (CdSe-MWCNT@PANI) constructed on a silicon base exhibits highly efficient power conversion capabilities owing to the aligned MWCNT bundle assisted enhanced charge transport pathways generated within the device. The device also shows a short circuit current density (Jsc) of 9.81 mA cm(-2) and an open circuit voltage (Voc) of 0.46 V. The power conversion efficiency (PCE) of the device is 5.41%, and the current response is quite stable, highly responsive, and reproducible.

18.
Nanoscale ; 8(25): 12510-9, 2016 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26750573

RESUMO

In recent years, there has been a considerable research focus on integrating cancer cell imaging and therapeutic functions into single nanoscale platforms for better treatment of cancer. This task could often be achieved by incorporating multiple components into a hybrid nanosystem. In this minireview, we highlight different types of silica-based hybrid nanosystems and their recent applications as integrated multifunctional platforms for cancer imaging and treatment. The discussions are divided into several sections focusing on various types of materials employed to integrate with silica, which include silica-metallic nanoparticle based hybrid nanocarriers, silica-gold nanoparticle based hybrid nanocarriers, silica-quantum dot based hybrid nanocarriers, silica-upconversion nanoparticle based hybrid nanocarriers, silica-carbon based hybrid nanocarriers, and organosilica nanocarriers. Therapeutic agents loaded in such hybrids include chemodrugs, proteins, DNA/RNA and photosensitizers. For targeted delivery into tumor sites, targeting ligands such as antibodies, peptides, aptamers, and other small molecules are grafted on the surface of the nanocarriers. At the end of the review, a brief summary and research outlook are presented. This minireview aims to provide a quick update of recent research achievements in the field.


Assuntos
Nanopartículas Metálicas , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Pontos Quânticos , Dióxido de Silício , Sistemas de Liberação de Medicamentos , Ouro , Humanos
19.
Adv Mater ; 28(48): 10637-10643, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27714913

RESUMO

Influence of light exposure on cesium lead halide nanostructures has been explored. A discovery of photon driven transformation (PDT) in 2D CsPbBr3 nanoplatelets is reported, in which the quantum-confined few-monolayer nanoplatelets will convert to bulk phase under very low irradiation intensity (≈20 mW cm-2 ). Benefiting from the remarkable emission color change during PDT, the multicolor luminescence photopatterns and facile information photo-encoding are established.

20.
Chem Asian J ; 11(10): 1523-7, 2016 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-26991763

RESUMO

Deep tissue bioimaging with three-photon (3P) excitation using near-infrared (NIR) light in the second IR window (1.0-1.4 µm) could provide high resolution images with an improved signal-to-noise ratio. Herein, we report a photostable and nontoxic 3P excitable donor-π-acceptor system (GMP) having 3P cross-section (σ3 ) of 1.78×10(-80)  cm(6) s(2) photon(-2) and action cross-section (σ3 η3 ) of 2.31×10(-81)  cm(6) s(2) photon(-2) , which provides ratiometric fluorescence response with divalent zinc ions in aqueous conditions. The probe signals the Zn(2+) binding at 530 and 600 nm, respectively, upon 1150 nm excitation with enhanced σ3 of 1.85×10(-80)  cm(6) s(2) photon(-2) and σ3 η3 of 3.33×10(-81)  cm(6) s(2) photon(-2) . The application of this probe is demonstrated for ratiometric 3P imaging of Zn(2+) in vitro using HuH-7 cell lines. Furthermore, the Zn(2+) concentration in rat hippocampal slices was imaged at 1150 nm excitation after incubation with GMP, illustrating its potential as a 3P ratiometric probe for deep tissue Zn(2+) ion imaging.


Assuntos
2,2'-Dipiridil/farmacologia , Corantes Fluorescentes/farmacologia , Zinco/química , 2,2'-Dipiridil/síntese química , 2,2'-Dipiridil/química , Animais , Linhagem Celular , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/química , Hipocampo/química , Humanos , Raios Infravermelhos , Masculino , Microscopia de Fluorescência , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA