Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Psychiatry ; 14: 1205605, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37441147

RESUMO

Background: Phenotyping analysis that includes time course is useful for understanding the mechanisms and clinical management of postoperative delirium. However, postoperative delirium has not been fully phenotyped. Hypothesis-free categorization of heterogeneous symptoms may be useful for understanding the mechanisms underlying delirium, although evidence is currently lacking. Therefore, we aimed to explore the phenotypes of postoperative delirium following invasive cancer surgery using a data-driven approach with minimal prior knowledge. Methods: We recruited patients who underwent elective invasive cancer resection. After surgery, participants completed 5 consecutive days of delirium assessments using the Delirium Rating Scale-Revised-98 (DRS-R-98) severity scale. We categorized 65 (13 questionnaire items/day × 5 days) dimensional DRS-R-98 scores using unsupervised machine learning (K-means clustering) to derive a small set of grouped features representing distinct symptoms across all participants. We then reapplied K-means clustering to this set of grouped features to delineate multiple clusters of delirium symptoms. Results: Participants were 286 patients, of whom 91 developed delirium defined according to Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition, criteria. Following the first K-means clustering, we derived four grouped symptom features: (1) mixed motor, (2) cognitive and higher-order thinking domain with perceptual disturbance and thought content abnormalities, (3) acute and temporal response, and (4) sleep-wake cycle disturbance. Subsequent K-means clustering permitted classification of participants into seven subgroups: (i) cognitive and higher-order thinking domain dominant delirium, (ii) prolonged delirium, (iii) acute and brief delirium, (iv) subsyndromal delirium-enriched, (v) subsyndromal delirium-enriched with insomnia, (vi) insomnia, and (vii) fit. Conclusion: We found that patients who have undergone invasive cancer resection can be delineated using unsupervised machine learning into three delirium clusters, two subsyndromal delirium clusters, and an insomnia cluster. Validation of clusters and research into the pathophysiology underlying each cluster will help to elucidate the mechanisms of postoperative delirium after invasive cancer surgery.

2.
Sci Rep ; 12(1): 3142, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35210451

RESUMO

In this study, we investigated the relationship between finger tapping tasks on the smartphone and the MDS-UPDRS I-II and PDQ-8 using the mPower dataset. mPower is a mobile application-based study for monitoring key indicators of PD progression and diagnosis. Currently, it is one of the largest, open access, mobile Parkinson's Disease studies. Data from seven modules with a total of 8,320 participants who provided the data of at least one task were released to the public researcher. The modules comprise demographics, MDS-UPDRS I-II, PDQ-8, memory, tapping, voice, and walking. Finger-tapping is one of the tasks that easy to perform and has been analyzed for the quantitative measurement of PD. Therefore, participants who performed both the tapping activity and MDS-UPDRS I-II rating scale were selected for our analysis. Note that the MDS-UPDRS mPower Survey only contains parts of the original scale and has not been clinimetrically tested for validity and reliability. We obtained a total of 1851 samples that contained the tapping activity and MDS-UPDRS I-II for the analysis. Nine features were selected to represent tapping activity. K-mean was applied as an unsupervised clustering algorithm in our study. For determining the number of clusters, the elbow method, Sihouette score, and Davies-Bouldin index, were employed as supporting evaluation metrics. Based on these metrics and expert opinion, we decide that three clusters were appropriate for our study. The statistical analysis found that the tapping features could separate participants into three severity groups. Each group has different characteristics and could represent different PD severity based on the MDS-UPDRS I-II and PDQ-8 scores. Currently, the severity assessment of a movement disorder is based on clinical observation. Therefore, it is highly dependant on the skills and experiences of the trained movement disorder specialist who performs the procedure. We believe that any additional methods that could potentially assist with quantitative assessment of disease severity, without the need for a clinical visit would be beneficial to both the healthcare professionals and patients.


Assuntos
Aplicativos Móveis , Doença de Parkinson/fisiopatologia , Smartphone , Caminhada , Feminino , Humanos , Masculino , Gravidade do Paciente
3.
Front Bioeng Biotechnol ; 9: 548357, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34178951

RESUMO

Surface electromyography (sEMG) is a non-invasive and straightforward way to allow the user to actively control the prosthesis. However, results reported by previous studies on using sEMG for hand and wrist movement classification vary by a large margin, due to several factors including but not limited to the number of classes and the acquisition protocol. The objective of this paper is to investigate the deep neural network approach on the classification of 41 hand and wrist movements based on the sEMG signal. The proposed models were trained and evaluated using the publicly available database from the Ninapro project, one of the largest public sEMG databases for advanced hand myoelectric prosthetics. Two datasets, DB5 with a low-cost 16 channels and 200 Hz sampling rate setup and DB7 with 12 channels and 2 kHz sampling rate setup, were used for this study. Our approach achieved an overall accuracy of 93.87 ± 1.49 and 91.69 ± 4.68% with a balanced accuracy of 84.00 ± 3.40 and 84.66 ± 4.78% for DB5 and DB7, respectively. We also observed a performance gain when considering only a subset of the movements, namely the six main hand movements based on six prehensile patterns from the Southampton Hand Assessment Procedure (SHAP), a clinically validated hand functional assessment protocol. Classification on only the SHAP movements in DB5 attained an overall accuracy of 98.82 ± 0.58% with a balanced accuracy of 94.48 ± 2.55%. With the same set of movements, our model also achieved an overall accuracy of 99.00% with a balanced accuracy of 91.27% on data from one of the amputee participants in DB7. These results suggest that with more data on the amputee subjects, our proposal could be a promising approach for controlling versatile prosthetic hands with a wide range of predefined hand and wrist movements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA