Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Immunity ; 56(11): 2555-2569.e5, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37967531

RESUMO

Tumors develop by invoking a supportive environment characterized by aberrant angiogenesis and infiltration of tumor-associated macrophages (TAMs). In a transgenic model of breast cancer, we found that TAMs localized to the tumor parenchyma and were smaller than mammary tissue macrophages. TAMs had low activity of the metabolic regulator mammalian/mechanistic target of rapamycin complex 1 (mTORC1), and depletion of negative regulator of mTORC1 signaling, tuberous sclerosis complex 1 (TSC1), in TAMs inhibited tumor growth in a manner independent of adaptive lymphocytes. Whereas wild-type TAMs exhibited inflammatory and angiogenic gene expression profiles, TSC1-deficient TAMs had a pro-resolving phenotype. TSC1-deficient TAMs relocated to a perivascular niche, depleted protein C receptor (PROCR)-expressing endovascular endothelial progenitor cells, and rectified the hyperpermeable blood vasculature, causing tumor tissue hypoxia and cancer cell death. TSC1-deficient TAMs were metabolically active and effectively eliminated PROCR-expressing endothelial cells in cell competition experiments. Thus, TAMs exhibit a TSC1-dependent mTORC1-low state, and increasing mTORC1 signaling promotes a pro-resolving state that suppresses tumor growth, defining an innate immune tumor suppression pathway that may be exploited for cancer immunotherapy.


Assuntos
Células Progenitoras Endoteliais , Proteínas Supressoras de Tumor , Animais , Humanos , Serina-Treonina Quinases TOR/metabolismo , Proteína 1 do Complexo Esclerose Tuberosa/genética , Macrófagos Associados a Tumor/metabolismo , Células Progenitoras Endoteliais/metabolismo , Receptor de Proteína C Endotelial , Alvo Mecanístico do Complexo 1 de Rapamicina , Neovascularização Patológica , Mamíferos
2.
Immunity ; 55(11): 2044-2058.e5, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36288724

RESUMO

Tumors are populated by antigen-presenting cells (APCs) including macrophage subsets with distinct origins and functions. Here, we examined how cancer impacts mononuclear phagocytic APCs in a murine model of breast cancer. Tumors induced the expansion of monocyte-derived tumor-associated macrophages (TAMs) and the activation of type 1 dendritic cells (DC1s), both of which expressed and required the transcription factor interferon regulatory factor-8 (IRF8). Although DC1s mediated cytotoxic T lymphocyte (CTL) priming in tumor-draining lymph nodes, TAMs promoted CTL exhaustion in the tumor, and IRF8 was required for TAMs' ability to present cancer cell antigens. TAM-specific IRF8 deletion prevented exhaustion of cancer-cell-reactive CTLs and suppressed tumor growth. Tumors from patients with immune-infiltrated renal cell carcinoma had abundant TAMs that expressed IRF8 and were enriched for an IRF8 gene expression signature. Furthermore, the TAM-IRF8 signature co-segregated with CTL exhaustion signatures across multiple cancer types. Thus, CTL exhaustion is promoted by TAMs via IRF8.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Animais , Camundongos , Macrófagos Associados a Tumor , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Linfócitos T Citotóxicos , Células Dendríticas
3.
J Biol Chem ; 287(3): 1980-95, 2012 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-22128186

RESUMO

The bee venom antimicrobial peptide, melittin, besides showing versatile activity against microorganisms also neutralizes lipopolysaccharide (LPS)-induced proinflammatory responses in macrophage cells. However, how the amino acid sequence of melittin contributes in its anti-inflammatory properties is mostly unknown. To determine the importance of the leucine zipper sequence of melittin in its neutralization of LPS-induced inflammatory responses in macrophages and interaction with LPS, anti-inflammatory properties of melittin and its three analogues and their interactions with LPS were studied in detail. Two of these analogues, namely melittin Mut-1 (MM-1) and melittin Mut-2 (MM-2), possess leucine to alanine substitutions in the single and double heptadic leucine residue(s) of melittin, respectively, whereas the third analogue is a scrambled peptide (Mel-SCR) that contains the amino acid composition of melittin with minor rearrangement in its leucine zipper sequence. Although MM-1 partly inhibited the production of proinflammatory cytokines in RAW 264.7 and rat primary macrophage cells in the presence of LPS, MM-2 and Mel-SCR were negligibly active. A progressive decrease in interaction of melittin with LPS, aggregation in LPS, and dissociation of LPS aggregates with alteration in the leucine zipper sequence of melittin was observed. Furthermore, with alteration in the leucine zipper sequence of melittin, these analogues failed to exhibit cellular responses associated with neutralization of LPS-induced inflammatory responses in macrophage cells by melittin. The data indicated a probable important role of the leucine zipper sequence of melittin in neutralizing LPS-induced proinflammatory responses in macrophage cells as well as in its interaction with LPS.


Assuntos
Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Meliteno/genética , Meliteno/farmacologia , Substituição de Aminoácidos , Animais , Linhagem Celular , Citocinas/biossíntese , Citocinas/genética , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Zíper de Leucina/genética , Lipopolissacarídeos/antagonistas & inibidores , Macrófagos/patologia , Meliteno/metabolismo , Camundongos , Mutação de Sentido Incorreto , Ratos
4.
Nat Med ; 29(12): 3077-3089, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37620627

RESUMO

Salivary gland cancers (SGCs) are rare, aggressive cancers without effective treatments when metastasized. We conducted a phase 2 trial evaluating nivolumab (nivo, anti-PD-1) and ipilimumab (ipi, anti-CTLA-4) in 64 patients with metastatic SGC enrolled in two histology-based cohorts (32 patients each): adenoid cystic carcinoma (ACC; cohort 1) and other SGCs (cohort 2). The primary efficacy endpoint (≥4 objective responses) was met in cohort 2 (5/32, 16%) but not in cohort 1 (2/32, 6%). Treatment safety/tolerability and progression-free survival (PFS) were secondary endpoints. Treatment-related adverse events grade ≥3 occurred in 24 of 64 (38%) patients across both cohorts, and median PFS was 4.4 months (95% confidence interval (CI): 2.4, 8.3) and 2.2 months (95% CI: 1.8, 5.3) for cohorts 1 and 2, respectively. We present whole-exome, RNA and T cell receptor (TCR) sequencing data from pre-treatment and on-treatment tumors and immune cell flow cytometry and TCR sequencing from peripheral blood at serial timepoints. Responding tumors universally demonstrated clonal expansion of pre-existing T cells and mutational contraction. Responding ACCs harbored neoantigens, including fusion-derived neoepitopes, that induced T cell responses ex vivo. This study shows that nivo+ipi has limited efficacy in ACC, albeit with infrequent, exceptional responses, and that it could be promising for non-ACC SGCs, particularly salivary duct carcinomas. ClinicalTrials.gov identifier: NCT03172624 .


Assuntos
Carcinoma , Neoplasias das Glândulas Salivares , Humanos , Nivolumabe/efeitos adversos , Ipilimumab/uso terapêutico , Neoplasias das Glândulas Salivares/tratamento farmacológico , Neoplasias das Glândulas Salivares/genética , Neoplasias das Glândulas Salivares/induzido quimicamente , Receptores de Antígenos de Linfócitos T , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos
5.
Nat Genet ; 54(7): 996-1012, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35817971

RESUMO

Defects in pathways governing genomic fidelity have been linked to improved response to immune checkpoint blockade therapy (ICB). Pathogenic POLE/POLD1 mutations can cause hypermutation, yet how diverse mutations in POLE/POLD1 influence antitumor immunity following ICB is unclear. Here, we comprehensively determined the effect of POLE/POLD1 mutations in ICB and elucidated the mechanistic impact of these mutations on tumor immunity. Murine syngeneic tumors harboring Pole/Pold1 functional mutations displayed enhanced antitumor immunity and were sensitive to ICB. Patients with POLE/POLD1 mutated tumors harboring telltale mutational signatures respond better to ICB than patients harboring wild-type or signature-negative tumors. A mutant POLE/D1 function-associated signature-based model outperformed several traditional approaches for identifying POLE/POLD1 mutated patients that benefit from ICB. Strikingly, the spectrum of mutational signatures correlates with the biochemical features of neoantigens. Alterations that cause POLE/POLD1 function-associated signatures generate T cell receptor (TCR)-contact residues with increased hydrophobicity, potentially facilitating T cell recognition. Altogether, the functional landscapes of POLE/POLD1 mutations shape immunotherapy efficacy.


Assuntos
DNA Polimerase II/genética , Neoplasias , Proteínas de Ligação a Poli-ADP-Ribose/genética , Animais , DNA Polimerase III/genética , Humanos , Imunoterapia , Camundongos , Mutação , Neoplasias/genética
6.
Nat Cancer ; 1(12): 1188-1203, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33834176

RESUMO

Immune checkpoint blockade (ICB) has improved outcomes for patients with advanced cancer, but the determinants of response remain poorly understood. Here we report differential effects of mutations in the homologous recombination genes BRCA1 and BRCA2 on response to ICB in mouse and human tumors, and further show that truncating mutations in BRCA2 are associated with superior response compared to those in BRCA1. Mutations in BRCA1 and BRCA2 result in distinct mutational landscapes and differentially modulate the tumor-immune microenvironment, with gene expression programs related to both adaptive and innate immunity enriched in BRCA2-deficient tumors. Single-cell RNA sequencing further revealed distinct T cell, natural killer, macrophage, and dendritic cell populations enriched in BRCA2-deficient tumors. Taken together, our findings reveal the divergent effects of BRCA1 and BRCA2-deficiency on ICB outcome, and have significant implications for elucidating the genetic and microenvironmental determinants of response to immunotherapy.


Assuntos
Inibidores de Checkpoint Imunológico , Neoplasias , Microambiente Tumoral , Animais , Proteína BRCA1/genética , Proteína BRCA2/genética , Genes BRCA2 , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Imunoterapia , Camundongos , Mutação , Neoplasias/tratamento farmacológico , Neoplasias/genética , Microambiente Tumoral/genética
7.
Cancer Cell ; 39(5): 662-677.e6, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33861994

RESUMO

Clear cell renal cell carcinomas (ccRCCs) are highly immune infiltrated, but the effect of immune heterogeneity on clinical outcome in ccRCC has not been fully characterized. Here we perform paired single-cell RNA (scRNA) and T cell receptor (TCR) sequencing of 167,283 cells from multiple tumor regions, lymph node, normal kidney, and peripheral blood of two immune checkpoint blockade (ICB)-naïve and four ICB-treated patients to map the ccRCC immune landscape. We detect extensive heterogeneity within and between patients, with enrichment of CD8A+ tissue-resident T cells in a patient responsive to ICB and tumor-associated macrophages (TAMs) in a resistant patient. A TCR trajectory framework suggests distinct T cell differentiation pathways between patients responding and resistant to ICB. Finally, scRNA-derived signatures of tissue-resident T cells and TAMs are associated with response to ICB and targeted therapies across multiple independent cohorts. Our study establishes a multimodal interrogation of the cellular programs underlying therapeutic efficacy in ccRCC.


Assuntos
Carcinoma de Células Renais/genética , Neoplasias Renais/genética , Ativação Linfocitária/imunologia , Linfócitos T/imunologia , Humanos , Neoplasias Renais/imunologia , Ativação Linfocitária/genética , Receptor de Morte Celular Programada 1/genética , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia
8.
Biochemistry ; 49(36): 7920-9, 2010 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-20695504

RESUMO

Melittin is a good model antimicrobial peptide to understand the basis of its lytic activities against bacteria and mammalian cells. Novel analogues of melittin were designed by substituting the leucine residue(s) at the "d" and "a" positions of its previously identified leucine zipper motif. A scrambled peptide having the same composition of melittin with altered leucine zipper sequence was also designed. The analogues of melittin including the scrambled peptide showed a drastic reduction in cytotoxicity though they exhibited comparable bactericidal activities. Only melittin but not its analogues localized strongly onto hRBCs and formed pores of approximately 2.2-3.4 nm. However, melittin and its analogues localized similarly onto Escherichia coli and formed pores of varying sizes as tested onto Bacillus megaterium. The data showed that the substitution of hydrophobic leucine residue(s) by lesser hydrophobic alanine residue(s) in the leucine zipper sequence of melittin disturbed its pore-forming activity and mechanism only in hRBCs but not in the tested bacteria.


Assuntos
Antibacterianos/farmacologia , Eritrócitos/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Meliteno/análogos & derivados , Meliteno/farmacologia , Sequência de Aminoácidos , Antibacterianos/química , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Eritrócitos/metabolismo , Escherichia coli/metabolismo , Hemólise , Humanos , Interações Hidrofóbicas e Hidrofílicas , Zíper de Leucina , Microscopia Confocal , Dados de Sequência Molecular
9.
Biochim Biophys Acta ; 1788(11): 2411-20, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19735644

RESUMO

Although BMAP-28 is a potent cathelicidin-derived bovine antimicrobial peptide, its cytotoxic activity against the human and other mammalian cells is of concern for converting it into a novel antimicrobial drug. We have identified a short leucine and isoleucine zipper sequences at the N- and C-terminals of BMAP-28, respectively. To understand the possible role of these structural elements in BMAP-28, a number of alanine-substituted analogs were designed, synthesized and characterized along with the wild-type peptide. The substitution of amino acids at single or multiple 'a' position(s) of these structural motifs by alanine showed significant effects on the cytotoxic activity of the molecule on the human red blood cells (hRBCs) and 3T3 cells without showing much effects on their MIC values against the selected bacteria. BMAP-28 and all its analogs depolarized the Escherichia coli cells with almost equal efficacy. In contrast, the alanine-substituted analogs of BMAP-28 depolarized hRBCs much less efficiently than the parent molecule. Results further showed that BMAP-28 assembled appreciably onto the live E. coli and hRBC. However, the selected less toxic analogs of BMAP-28 although assembled as good as the parent molecule onto the live E. coli cells, their assembly onto the live mammalian hRBCs was much weaker as compared to that of the wild-type molecule. Looking at the remarkable similarity with the data presented in our previous work on melittin, it appears that probably the heptad repeat sequence possesses a general role in maintaining the cytotoxicity of the antimicrobial peptides against the mammalian cells and assembly therein.


Assuntos
Antibacterianos/farmacologia , Proteínas/química , Proteínas/metabolismo , Sequências Repetitivas de Aminoácidos , Células 3T3 , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Bovinos , Membrana Celular/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Escherichia coli/metabolismo , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Humanos , Camundongos , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação/genética , Proteínas/genética , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade
10.
Semin Radiat Oncol ; 30(2): 113-128, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32381291

RESUMO

Cancer is the manifestation of uncontrolled cellular growth and immune escape mechanisms. Unrestrained tumor growth can be associated with incidental errors in the genome during replication and genotoxic agents can alter the structure and sequence of our DNA. Among all genetic aberrations in cancer, only limited number of mutations can produce immunogenic antigens which have the potential to bind human leukocyte antigen class I or human leukocyte antigen class II, and help activate the adaptive immune system. These neoantigens can be recognized by CD8+ and CD4+ neoantigen-specific T lymphocytes. Recently, several immune checkpoint targeting drugs have been approved for clinical use. Primarily, these drugs expand and facilitate the cytotoxic activity of neoantigen-specific T cells to eradicate tumors. Differential drug response across cancers could be attributed, at least in part, to differences in the 'tumor antigen landscape' and 'antigen presentation pathway' in patients. Although tumor mutational burden correlates with response to immune checkpoint inhibitors in many cancer types and has evolved as a broad biomarker, a comprehensive understanding of the neoantigen landscape and the function of cognate T cell responses is lacking and is needed for improved patient selection criteria and neoantigen vaccine design. Here, we review cancer neoantigens, their implications for antitumor responses, the dynamics of neoantigen-specific T cells, and the advancement of neoantigen-based therapy in proposed clinical trials.


Assuntos
Imunoterapia/métodos , Neoplasias/imunologia , Neoplasias/radioterapia , Antígenos de Neoplasias/imunologia , Vacinas Anticâncer/imunologia , Terapia Combinada , Humanos
11.
Biochemistry ; 48(46): 10905-17, 2009 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-19845398

RESUMO

BMAP-27 is a cathelicidin-derived bovine antimicrobial peptide, which shows moderate cytotoxicity and potent antibacterial activity against a wide variety of microorganisms. Despite a number of studies, very little is known about the amino acid sequences of this peptide that controls its antibacterial and cytotoxic activities. Small stretches of phenylalanine and leucine zipper sequences were identified at the N- and C-termini of the molecule, respectively. To understand the structural and functional roles of these sequence elements, we synthesized and characterized several analogues of BMAP-27 after substituting leucine or phenylalanine residue(s) at a and/or d positions of the leucine and phenylalanine zipper sequences, respectively, with alanine. BMAP-27 analogues exhibited significantly reduced cytotoxicity against the human red blood (hRBC) and murine 3T3 cells as compared to that of the wild-type peptide. Interestingly, BMAP-27 and its analogues exhibited comparable antibacterial activity against the selected Gram-positive and Gram-negative bacteria. Moreover, BMAP-27 and its analogues exhibited similar localization and assembly onto the selected bacteria and induced comparable permeability in these cells. However, only BMAP-27, not its analogues, assembled and bound strongly onto the hRBCs and permeabilized them. The results indicated that not only a leucine zipper but also a phenylalanine zipper sequence plays an important role in maintaining the assembly of BMAP-27 on the mammalian cells examined here and cytotoxic activity against them. To the best of our knowledge, this is the first report of the evaluation of structural and functional roles of a phenylalanine zipper sequence in a naturally occurring antimicrobial peptide.


Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/toxicidade , Desenho de Fármacos , Zíper de Leucina/fisiologia , Fenilalanina/metabolismo , Proteínas/química , Proteínas/toxicidade , Células 3T3 , Sequência de Aminoácidos , Substituição de Aminoácidos/fisiologia , Naftalenossulfonato de Anilina/química , Animais , Peptídeos Catiônicos Antimicrobianos/farmacologia , Bactérias/citologia , Bactérias/efeitos dos fármacos , Bovinos , Membrana Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Transferência Ressonante de Energia de Fluorescência , Hemólise/efeitos dos fármacos , Humanos , Lipossomos/química , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/farmacologia , Peptídeos/toxicidade , Permeabilidade/efeitos dos fármacos , Estrutura Secundária de Proteína , Proteínas/farmacologia , Espectrometria de Fluorescência
12.
Nat Med ; 25(5): 767-775, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31011208

RESUMO

Anti-tumor immunity is driven by self versus non-self discrimination. Many immunotherapeutic approaches to cancer have taken advantage of tumor neoantigens derived from somatic mutations. Here, we demonstrate that gene fusions are a source of immunogenic neoantigens that can mediate responses to immunotherapy. We identified an exceptional responder with metastatic head and neck cancer who experienced a complete response to immune checkpoint inhibitor therapy, despite a low mutational load and minimal pre-treatment immune infiltration in the tumor. Using whole-genome sequencing and RNA sequencing, we identified a novel gene fusion and demonstrated that it produces a neoantigen that can specifically elicit a host cytotoxic T cell response. In a cohort of head and neck tumors with low mutation burden, minimal immune infiltration and prevalent gene fusions, we also identified gene fusion-derived neoantigens that generate cytotoxic T cell responses. Finally, analyzing additional datasets of fusion-positive cancers, including checkpoint-inhibitor-treated tumors, we found evidence of immune surveillance resulting in negative selective pressure against gene fusion-derived neoantigens. These findings highlight an important class of tumor-specific antigens and have implications for targeting gene fusion events in cancers that would otherwise be less poised for response to immunotherapy, including cancers with low mutational load and minimal immune infiltration.


Assuntos
Antígenos de Neoplasias/genética , Imunoterapia/métodos , Neoplasias/imunologia , Neoplasias/terapia , Linfócitos T Citotóxicos/imunologia , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/imunologia , Fusão Gênica , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/imunologia , Neoplasias de Cabeça e Pescoço/terapia , Humanos , Fatores de Transcrição NFI/genética , Fatores de Transcrição NFI/imunologia , Neoplasias/genética , Proteínas Nucleares/genética , Proteínas Nucleares/imunologia , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/imunologia , Proteínas de Ligação a Poli-ADP-Ribose/genética , Proteínas de Ligação a Poli-ADP-Ribose/imunologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-myb/genética , Proteínas Proto-Oncogênicas c-myb/imunologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/imunologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/terapia , Sequenciamento Completo do Genoma
13.
Int Immunopharmacol ; 8(5): 688-700, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18387511

RESUMO

Curcumin specifically exhibits cytostatic and cytotoxic effects against tumors of multiple origin. Previously we have demonstrated apoptotic activity of curcumin against tumor cells with no effect on normal cells in-vitro. Many anti-cancer drugs exhibit deleterious effects on immune cells, which restrict their wide use in-vivo. In the present study, we have evaluated the effect of curcumin on the major functions of T cells, natural killer cells, macrophages and on total splenocytes in-vivo, which insight the role of curcumin on their broad effector functions. This study demonstrates that prolonged curcumin-injections (i.p.) do not impair the cytotoxic function of natural killer cells, the generation of reactive oxygen species and nitric oxide from macrophages and the levels of Th1 regulatory cytokines remained unaltered. Interestingly, curcumin-injections enhanced the mitogen and antigen induced proliferation potential of T cells. We have also evaluated immunomodulatory effects of curcumin in ascites-bearing animals. This study strengthens our belief that curcumin is a safe and useful immunomodulator for the immune system.


Assuntos
Curcumina/farmacologia , Fatores Imunológicos , Animais , Anticorpos Antineoplásicos/biossíntese , Anticorpos Antineoplásicos/genética , Citotoxicidade Celular Dependente de Anticorpos/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ciclosporina/farmacologia , Feminino , Indicadores e Reagentes , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Óxido Nítrico/biossíntese , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Linfócitos T/efeitos dos fármacos
15.
Oral Oncol ; 78: 186-193, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29496049

RESUMO

OBJECTIVES: The intracellular DNA sensor stimulator of interferon genes (STING) has recently been shown to play a vital role in anti-viral and anti-tumor immune responses stimulating cytokine production. While human papillomavirus (HPV) is a causative agent for a subset of head and neck squamous cell carcinoma (HNSCC) with unique etiology and clinical outcome, how the STING pathway is regulated in a virus-induced tumor microenvironment is not well understood. Since STING inactivation likely reflects immunoescape via innate immunity, we hypothesized that its restoration would improve efficacy of the immune modulatory monoclonal antibody (mAb), cetuximab. MATERIALS AND METHODS: We correlated STING protein expression with clinical parameters by immunohistochemistry (n = 106) and its mRNA expression from The Cancer Genome Atlas (TCGA) in HNSCC tissue specimens. STING protein expression was tested for association with cancer-specific survival (CSS). We further examined the impact of STING activation on cetuximab-mediated immunity using an in vitro NK:DC:tumor cells co-culture system. RESULTS: In this study, we found that expression of STING both at the protein and mRNA level was higher in HPV positive (HPV+) specimens but unrelated to TNM stage or cancer-specific survival. Our in vitro studies verified that STING activation enhanced cetuximab mediated NK cell activation and DC maturation. CONCLUSION: Our findings suggest a novel role of STING in HPV-related carcinogenesis, in which activation of the STING signaling pathway may facilitate anti-tumor response in HNSCC patients, particularly in combination with therapeutic monoclonal antibodies (mAbs) such as cetuximab, an epidermal growth factor receptor (EGFR) inhibitor.


Assuntos
Alphapapillomavirus/isolamento & purificação , Antineoplásicos Imunológicos/farmacologia , Cetuximab/farmacologia , Neoplasias de Cabeça e Pescoço/imunologia , Neoplasias de Cabeça e Pescoço/virologia , Células Matadoras Naturais/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/imunologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/virologia , Linhagem Celular Tumoral , Humanos , Células Matadoras Naturais/imunologia
16.
Clin Cancer Res ; 24(1): 62-72, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29061643

RESUMO

Purpose: The response rate of patients with head and neck squamous cell carcinoma (HNSCC) to cetuximab therapy is only 15% to 20%, despite frequent EGFR overexpression. Because immunosuppression is common in HNSCC, we hypothesized that adding a proinflammatory TLR8 agonist to cetuximab therapy might result in enhanced T-lymphocyte stimulation and anti-EGFR-specific priming.Experimental Design: Fourteen patients with previously untreated HNSCC were enrolled in this neoadjuvant trial and treated preoperatively with 3 to 4 weekly doses of motolimod (2.5 mg/m2) and cetuximab. Correlative tumor and peripheral blood specimens were obtained at baseline and at the time of surgical resection and analyzed for immune biomarker changes. Preclinical in vitro studies were also performed to assess the effect of cetuximab plus motolimod on myeloid cells.Results: TLR8 stimulation skewed monocytes toward an M1 phenotype and reversed myeloid-derived suppressor cell (MDSC) suppression of T-cell proliferation in vitro These data were validated in a prospective phase Ib neoadjuvant trial, in which fewer MDSC and increased M1 monocyte infiltration were found in tumor-infiltrating lymphocytes. Motolimod plus cetuximab also decreased induction of Treg and reduced markers of suppression, including CTLA-4, CD73, and membrane-bound TGFß. Significantly increased circulating EGFR-specific T cells were observed, concomitant with enhanced CD8+ T-cell infiltration into tumors. These T cells manifested increased T-cell receptor (TCR) clonality, upregulation of the costimulatory receptor CD27, and downregulation of inhibitory receptor TIGIT.Conclusions: Enhanced inflammatory stimulation in the tumor microenvironment using a TLR agonist overcomes suppressive myeloid and regulatory cells, enhancing the cellular antitumor immune response by therapeutic mAb in HNSCC. Clin Cancer Res; 24(1); 62-72. ©2017 AACR.


Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Cetuximab/uso terapêutico , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/imunologia , Imunomodulação/efeitos dos fármacos , Receptor 8 Toll-Like/agonistas , Adulto , Idoso , Antineoplásicos Imunológicos/farmacologia , Biomarcadores , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular , Cetuximab/farmacologia , Citocinas/metabolismo , Feminino , Neoplasias de Cabeça e Pescoço/diagnóstico , Neoplasias de Cabeça e Pescoço/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Ativação Linfocitária , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Masculino , Pessoa de Meia-Idade , Terapia de Alvo Molecular , Células Mieloides/efeitos dos fármacos , Células Mieloides/imunologia , Células Mieloides/metabolismo , Terapia Neoadjuvante , Gradação de Tumores , Estadiamento de Neoplasias , Fenótipo
17.
Clin Cancer Res ; 23(3): 707-716, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27496866

RESUMO

PURPOSE: Cetuximab, an EGFR-specific antibody (mAb), modestly improves clinical outcome in patients with head and neck cancer (HNC). Cetuximab mediates natural killer (NK) cell:dendritic cell (DC) cross-talk by cross-linking FcγRIIIa, which is important for inducing antitumor cellular immunity. Cetuximab-activated NK cells upregulate the costimulatory receptor CD137 (4-1BB), which, when triggered by agonistic mAb urelumab, might enhance NK-cell functions, to promote T-cell-based immunity. EXPERIMENTAL DESIGN: CD137 expression on tumor-infiltrating lymphocytes was evaluated in a prospective cetuximab neoadjuvant trial, and CD137 stimulation was evaluated in a phase Ib trial, in combining agonistic urelumab with cetuximab. Flow cytometry and cytokine release assays using NK cells and DC were used in vitro, testing the addition of urelumab to cetuximab-activated NK, DC, and cross presentation to T cells. RESULTS: CD137 agonist mAb urelumab enhanced cetuximab-activated NK-cell survival, DC maturation, and tumor antigen cross-presentation. Urelumab boosted DC maturation markers, CD86 and HLA DR, and antigen-processing machinery (APM) components TAP1/2, leading to increased tumor antigen cross-presentation. In neoadjuvant cetuximab-treated patients with HNC, upregulation of CD137 by intratumoral, cetuximab-activated NK cells correlated with FcγRIIIa V/F polymorphism and predicted clinical response. Moreover, immune biomarker modulation was observed in an open label, phase Ib clinical trial, of patients with HNC treated with cetuximab plus urelumab. CONCLUSIONS: These results suggest a beneficial effect of combination immunotherapy using cetuximab and CD137 agonist in HNC. Clin Cancer Res; 23(3); 707-16. ©2016 AACR.


Assuntos
Antígenos de Neoplasias/imunologia , Antineoplásicos Imunológicos/farmacologia , Carcinoma de Células Escamosas/imunologia , Cetuximab/farmacologia , Células Dendríticas/efeitos dos fármacos , Neoplasias de Cabeça e Pescoço/imunologia , Células Matadoras Naturais/efeitos dos fármacos , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia , Ligante 4-1BB/imunologia , Anticorpos Monoclonais/farmacologia , Apresentação de Antígeno , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Citocinas/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Genótipo , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Linfócitos/efeitos dos fármacos , Linfócitos/imunologia , Linfócitos do Interstício Tumoral/imunologia , Polimorfismo Genético , Receptor Cross-Talk/efeitos dos fármacos , Receptores de IgG/genética , Receptores de IgG/imunologia , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/agonistas , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/biossíntese , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/genética , Regulação para Cima/efeitos dos fármacos
18.
Cancer Immunol Res ; 5(5): 408-416, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28408386

RESUMO

Despite emerging appreciation for the important role of immune checkpoint receptors in regulating the effector functions of T cells, it is unknown whether their expression is involved in determining the clinical outcome in response to cetuximab therapy. We examined the expression patterns of immune checkpoint receptors (including PD-1, CTLA-4, and TIM-3) and cytolytic molecules (including granzyme B and perforin) of CD8+ tumor-infiltrating lymphocytes (TIL) and compared them with those of peripheral blood T lymphocytes (PBL) in patients with head and neck cancer (HNSCC) during cetuximab therapy. The frequency of PD-1 and TIM-3 expression was significantly increased in CD8+ TILs compared with CD8+ PBLs (P = 0.008 and P = 0.02, respectively). This increased CD8+ TIL population coexpressed granzyme B/perforin and PD-1/TIM-3, which suggests a regulatory role for these immune checkpoint receptors in cetuximab-promoting cytolytic activities of CD8+ TILs. Indeed, the increased frequency of PD-1+ and TIM-3+ CD8+ TILs was inversely correlated with clinical outcome of cetuximab therapy. These findings support the use of PD-1 and TIM-3 as biomarkers to reflect immune status of CD8+ T cells in the tumor microenvironment during cetuximab therapy. Blockade of these immune checkpoint receptors might enhance cetuximab-based cancer immunotherapy to reverse CD8+ TIL dysfunction, thus potentially improving clinical outcomes of HNSCC patients. Cancer Immunol Res; 5(5); 408-16. ©2017 AACR.


Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Linfócitos T CD8-Positivos/imunologia , Carcinoma de Células Escamosas/tratamento farmacológico , Cetuximab/uso terapêutico , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Receptor Celular 2 do Vírus da Hepatite A/imunologia , Linfócitos do Interstício Tumoral/imunologia , Receptor de Morte Celular Programada 1/imunologia , Antígeno CTLA-4 , Carcinoma de Células Escamosas/imunologia , Granzimas/imunologia , Neoplasias de Cabeça e Pescoço/imunologia , Humanos , Perforina/imunologia , Carcinoma de Células Escamosas de Cabeça e Pescoço , Resultado do Tratamento
19.
Oncoimmunology ; 6(7): e1329071, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28811971

RESUMO

Radiation therapy (RT) can induce upregulation of programmed death ligand 1 (PD-L1) on tumor cells or myeloid cells, which may affect response to PD-1-based immunotherapy. PD-L1 upregulation during RT is a dynamic process that has been difficult to monitor during treatment. The aim of this study was to evaluate the RT-induced PD-L1 upregulation in the tumor and its microenvironment using immunoPET/CT imaging of two syngeneic murine tumor models (HPV+ head and neck squamous cell carcinoma (HNSCC) or B16F10 melanoma). Tumors were established in two locations per mouse (neck and flank), and fractionated RT (2 Gy × 4 or 2 Gy × 10) was delivered only to the neck tumor, alone or during anti-PD-1 mAb immunotherapy. PD-L1 expression was measured by PET/CT imaging using Zr-89 labeled anti-mouse PD-L1 mAb, and results were validated by flow cytometry. PET/CT imaging demonstrated significantly increased tracer uptake in irradiated neck tumors compared with non-irradiated flank tumors. Ex vivo analysis by biodistribution and flow cytometry validated PD-L1 upregulation specifically in irradiated tumors. In the HNSCC model, RT-induced PD-L1 upregulation was only observed after 2 Gy × 10 fractionated RT, while in the B16F10 model upregulation of PD-L1 occurred after 2 Gy × 4 fractionated RT. Fractionated RT, but not anti-PD-1 therapy, upregulated PD-L1 expression on tumor and infiltrating inflammatory cells in murine models, which could be non-invasively monitored by immunoPET/CT imaging using Zr-89 labeled anti-mouse PD-L1 mAb, and differentially identified anti-PD-1 responsive as well as selectively irradiated tumors in vivo.

20.
Front Pharmacol ; 8: 382, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28674498

RESUMO

Survival benefit and long-term duration of clinical response have been seen using the epidermal growth factor receptor (EGFR)-targeted monoclonal antibody (mAb) nimotuzumab. Blocking EGFR signaling may not be the only mechanism of action underlying its efficacy. As an IgG1 isotype mAb, nimotuzumab's capacity of killing tumor cells by antibody dependent cellular cytotoxicity (ADCC) and to induce an immune response in cancer patients have not been studied. ADCC-induced by nimotuzumab was determined using a 51Cr release assay. The in vitro effect of nimotuzumab on natural killer (NK) cell activation and dendritic cell (DC) maturation and the in vivo frequency of circulating regulatory T cells (Tregs) and NK cells were assessed by flow cytometry. Cytokine levels in supernatants were determined by ELISA. ELISpot was carried out to quantify EGFR-specific T cells in nimotuzumab-treated head and neck cancer (HNSCC) patients. Nimotuzumab was able to kill EGFR+ tumor cells by NK cell-mediated ADCC. Nimotuzumab-activated NK cells promoted DC maturation and EGFR-specific CD8+ T cell priming. Interestingly, nimotuzumab led to upregulation of some immune checkpoint molecules on NK cells (TIM-3) and DC (PD-L1), to a lower extent than another EGFR mAb, cetuximab. Furthermore, circulating EGFR-specific T cells were identified in nimotuzumab-treated HNSCC patients. Notably, nimotuzumab combined with cisplatin-based chemotherapy and radiation increased the frequency of peripheral CD4+CD39+FOXP3+Tregs which otherwise were decreased to baseline values when nimotuzumab was used as monotherapy. The frequency of circulating NK cells remained constant during treatment. Nimotuzumab-induced, NK cell-mediated DC priming led to induction of anti-EGFR specific T cells in HNSCC patients. The association between EGFR-specific T cells and patient clinical benefit with nimotuzumab treatment should be investigated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA