RESUMO
Chronic exposure to inorganic arsenic (iAs) has been linked to diabetes in both humans and mice, but the role of iAs exposure prior to conception and its transgenerational effects are understudied. The present study investigated transgenerational effects of preconception iAs exposure in C57BL/6J mice, focusing on metabolic phenotypes of G1 and G2 offspring. Body composition and diabetes indicators, including fasting blood glucose, fasting plasma insulin, glucose tolerance, and indicators of insulin resistance and beta cell function, were examined in both generations. The results suggest that the preconception iAs exposure in the parental (G0) generation induced diabetic phenotypes in G1 and G2 offspring in a sex-dependent manner. G1 females from iAs-exposed parents developed insulin resistance while no significant effects were found in G1 males. In the G2 generation, insulin resistance was observed only in males from iAs-exposed grandparents and was associated with higher bodyweights and adiposity. Similar trends were observed in G2 females from iAs-exposed grandparents, but these did not reach statistical significance. Thus, preconception iAs exposure altered metabolic phenotype across two generations of mouse offspring. Future research will investigate the molecular mechanisms underlying these transgenerational effects, including epigenomic and transcriptomic profiles of germ cells and tissues from G0, G1 and G2 generations.
Assuntos
Arsenitos , Resistência à Insulina , Feminino , Humanos , Masculino , Animais , Camundongos , Camundongos Endogâmicos C57BL , Arsenitos/toxicidade , FenótipoRESUMO
Type 2 diabetes (T2D) is a complex metabolic disorder with no cure and high morbidity. Exposure to inorganic arsenic (iAs), a ubiquitous environmental contaminant, is associated with increased T2D risk. Despite growing evidence linking iAs exposure to T2D, the factors underlying inter-individual differences in susceptibility remain unclear. This study examined the interaction between chronic iAs exposure and body composition in a cohort of 75 Diversity Outbred mice. The study design mimics that of an exposed human population where the genetic diversity of the mice provides the variation in response, in contrast to a design that includes untreated mice. Male mice were exposed to iAs in drinking water (100 ppb) for 26 weeks. Metabolic indicators used as diabetes surrogates included fasting blood glucose and plasma insulin (FBG, FPI), blood glucose and plasma insulin 15 min after glucose challenge (BG15, PI15), homeostatic model assessment for [Formula: see text]-cell function and insulin resistance (HOMA-B, HOMA-IR), and insulinogenic index. Body composition was determined using magnetic resonance imaging, and the concentrations of iAs and its methylated metabolites were measured in liver and urine. Associations between cumulative iAs consumption and FPI, PI15, HOMA-B, and HOMA-IR manifested as significant interactions between iAs and body weight/composition. Arsenic speciation analyses in liver and urine suggest little variation in the mice's ability to metabolize iAs. The observed interactions accord with current research aiming to disentangle the effects of multiple complex factors on T2D risk, highlighting the need for further research on iAs metabolism and its consequences in genetically diverse mouse strains.
Assuntos
Arsênio , Arsenicais , Diabetes Mellitus Tipo 2 , Insulinas , Humanos , Masculino , Camundongos , Animais , Arsênio/toxicidade , Glicemia , Camundongos de Cruzamento Colaborativo , Diabetes Mellitus Tipo 2/genética , Peso CorporalRESUMO
We have previously reported that preconception exposure to iAs may contribute to the development of diabetes in mouse offspring by altering gene expressions in paternal sperm. However, the individual contributions of iAs and its methylated metabolites, monomethylated arsenic (MAs) and dimethylated arsenic (DMAs), to changes in the sperm transcriptome could not be determined because all three As species are present in sperm after in vivo iAs exposure. The goal of the present study was to assess As species-specific effects using an ex vivo model. We exposed freshly isolated mouse sperm to either 0.1 or 1 µM arsenite (iAsIII) or the methylated trivalent arsenicals, MAsIII and DMAsIII, and used RNA-sequencing to identify differentially expressed genes, enriched pathways, and associated protein networks. For all arsenicals tested, the exposures to 0.1 µM concentrations had greater effects on gene expression than 1 µM exposures. Transcription factor AP-1 and B cell receptor complexes were the most significantly enriched pathways in sperm exposed to 0.1 µM iAsIII. The Mre11 complex and Antigen processing were top pathways targeted by exposure to 0.1 µM MAsIII and DMAsIII, respectively. While there was no overlap between gene transcripts altered by ex vivo exposures in the present study and those altered by in vivo exposure in our prior work, several pathways were shared, including PI3K-Akt signaling, Focal adhesion, and Extracellular matrix receptor interaction pathways. Notably, the protein networks associated with these pathways included those with known roles in diabetes. This study is the first to assess the As species-specific effects on sperm transcriptome, linking these effects to the diabetogenic effects of iAs exposure.
Assuntos
Arsênio , Arsenicais , Arsenitos , Diabetes Mellitus , Camundongos , Masculino , Animais , Arsenitos/toxicidade , Arsenitos/metabolismo , Arsênio/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fator de Transcrição AP-1/metabolismo , Metilação , Sêmen/metabolismo , Arsenicais/farmacologia , Diabetes Mellitus/metabolismo , Espermatozoides/metabolismo , RNA/metabolismo , Transcrição Gênica , Receptores de Antígenos de Linfócitos B/metabolismoRESUMO
BACKGROUND: Inorganic arsenic (iAs) is a ubiquitous metalloid and drinking water contaminant. Prenatal exposure is associated with birth outcomes across multiple studies. During metabolism, iAs is sequentially methylated to mono- and di-methylated arsenical species (MMAs and DMAs) to facilitate whole body clearance. Inefficient methylation (e.g., higher urinary % MMAs) is associated with increased risk of certain iAs-associated diseases. One-carbon metabolism factors influence iAs methylation, modifying toxicity in adults, and warrant further study during the prenatal period. The objective of this study was to evaluate folate, vitamin B12, and homocysteine as modifiers of the relationship between biomarkers of iAs methylation efficiency and birth outcomes. METHODS: Data from the Biomarkers of Exposure to ARsenic (BEAR) pregnancy cohort (2011-2012) with maternal urine and cord serum arsenic biomarkers and maternal serum folate, vitamin B12, and homocysteine concentrations were utilized. One-carbon metabolism factors were dichotomized using clinical cutoffs and median splits. Multivariable linear regression models were fit to evaluate associations between each biomarker and birth outcome overall and within levels of one-carbon metabolism factors. Likelihood ratio tests of full and reduced models were used to test the significance of statistical interactions on the additive scale (α = 0.10). RESULTS: Among urinary biomarkers, % U-MMAs was most strongly associated with birth weight (ß = - 23.09, 95% CI: - 44.54, - 1.64). Larger, more negative mean differences in birth weight were observed among infants born to women who were B12 deficient (ß = - 28.69, 95% CI: - 53.97, - 3.42) or experiencing hyperhomocysteinemia (ß = - 63.29, 95% CI: - 154.77, 28.19). Generally, mean differences in birth weight were attenuated among infants born to mothers with higher serum concentrations of folate and vitamin B12 (or lower serum concentrations of homocysteine). Effect modification by vitamin B12 and homocysteine was significant on the additive scale for some associations. Results for gestational age were less compelling, with an approximate one-week mean difference associated with C-tAs (ß = 0.87, 95% CI: 0, 1.74), but not meaningful otherwise. CONCLUSIONS: Tissue distributions of iAs and its metabolites (e.g., % MMAs) may vary according to serum concentrations of folate, vitamin B12 and homocysteine during pregnancy. This represents a potential mechanism through which maternal diet may modify the harms of prenatal exposure to iAs.
Assuntos
Arsênio , Arsenicais , Efeitos Tardios da Exposição Pré-Natal , Adulto , Arsênio/toxicidade , Biomarcadores/metabolismo , Peso ao Nascer , Carbono , Feminino , Ácido Fólico , Homocisteína , Humanos , Metilação , Gravidez , Vitamina B 12RESUMO
Arsenic is a pervasive environmental toxin that is listed as the top priority for investigation by the Agency for Toxic Substance and Disease Registry. While chronic exposure to arsenic is associated with type 2 diabetes (T2D), the underlying mechanisms are largely unknown. We have recently demonstrated that arsenic treatment of INS-1 832/13 pancreatic beta cells impairs glucose-stimulated insulin secretion (GSIS), a T2D hallmark. We have also shown that arsenic alters the microRNA profile of beta cells. MicroRNAs have a well-established post-transcriptional regulatory role in both normal beta cell function and T2D pathogenesis. We hypothesized that there are microRNA master regulators that shape beta cell gene expression in pathways pertinent to GSIS after exposure to arsenicals. To test this hypothesis, we first treated INS-1 832/13 beta cells with either inorganic arsenic (iAsIII) or monomethylarsenite (MAsIII) and confirmed GSIS impairment. We then performed multi-omic analysis using chromatin run-on sequencing, RNA-sequencing, and small RNA-sequencing to define profiles of transcription, gene expression, and microRNAs, respectively. Integrating across these data sets, we first showed that genes downregulated by iAsIII treatment are enriched in insulin secretion and T2D pathways, whereas genes downregulated by MAsIII treatment are enriched in cell cycle and critical beta cell maintenance factors. We also defined the genes that are subject primarily to post-transcriptional control in response to arsenicals and demonstrated that miR-29a is the top candidate master regulator of these genes. Our results highlight the importance of microRNAs in arsenical-induced beta cell dysfunction and reveal both shared and unique mechanisms between iAsIII and MAsIII.
Assuntos
Arsênio , Arsenicais , Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , MicroRNAs , Arsênio/metabolismo , Arsênio/toxicidade , Arsenicais/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Glucose/metabolismo , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismoRESUMO
Arsenic toxicity is a global concern to human health causing increased incidences of cancer, bronchopulmonary, and cardiovascular diseases. In human and mouse, inorganic arsenic (iAs) is metabolized in a series of methylation steps catalyzed by arsenic (3) methyltransferase (AS3MT), forming methylated arsenite (MAsIII), dimethylarsenite (DMAIII) and the volatile trimethylarsine (TMA). The methylation of arsenic is coordinated by four conserved cysteines proposed to participate in catalysis, namely C33, C62, C157, and C207 in mouse AS3MT. The current model consists of AS3MT methylating iAs in the presence of the cofactor S-adenosyl-L-methionine (SAM), and the formation of intramolecular disulfide bonds following the reduction of MAsV to MAsIII. In the presence of endogenous reductants, these disulfide bonds are reduced, the enzyme re-generates, and the second round of methylation ensues. Using in vitro methylation assays, we find that AS3MT undergoes an initial automethylation step in the absence of iAs. This automethylation is enhanced by glutathione (GSH) and dithiothreitol (DTT), suggesting that reduced cysteines accept methyl groups from SAM to form S-methylcysteines. Following the addition of iAs, automethylation of AS3MT is decreased. Furthermore, using a Flag-AS3MT immunoprecipitation coupled to MS/MS, we identify both C33 and C62 as acceptors of the methyl group in vivo. Site-directed mutagenesis (C to A) revealed that three of the previously described cysteines were required for AS3MT automethylation. In vitro experiments show that automethylated AS3MT can methylate iAs in the presence of SAM. Thus, we propose that automethylated may represent an active conformation of AS3MT.
Assuntos
Arsênio , Metiltransferases , Animais , Arsênio/metabolismo , Arsênio/toxicidade , Cisteína , Dissulfetos , Glutationa/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , Camundongos , Espectrometria de Massas em TandemRESUMO
The toxic metalloid inorganic arsenic (iAs) is widely distributed in the environment. Chronic exposure to iAs from environmental sources has been linked to a variety of human diseases. Methylation of iAs is the primary pathway for metabolism of iAs. In humans, methylation of iAs is catalyzed by arsenic (+ 3 oxidation state) methyltransferase (AS3MT). Conversion of iAs to mono- and di-methylated species (MAs and DMAs) detoxifies iAs by increasing the rate of whole body clearance of arsenic. Interindividual differences in iAs metabolism play key roles in pathogenesis of and susceptibility to a range of disease outcomes associated with iAs exposure. These adverse health effects are in part associated with the production of methylated trivalent arsenic species, methylarsonous acid (MAsIII) and dimethylarsinous acid (DMAsIII), during AS3MT-catalyzed methylation of iAs. The formation of these metabolites activates iAs to unique forms that cause disease initiation and progression. Taken together, the current evidence suggests that methylation of iAs is a pathway for detoxification and for activation of the metalloid. Beyond this general understanding of the consequences of iAs methylation, many questions remain unanswered. Our knowledge of metabolic targets for MAsIII and DMAsIII in human cells and mechanisms for interactions between these arsenicals and targets is incomplete. Development of novel analytical methods for quantitation of MAsIII and DMAsIII in biological samples promises to address some of these gaps. Here, we summarize current knowledge of the enzymatic basis of MAsIII and DMAsIII formation, the toxic actions of these metabolites, and methods available for their detection and quantification in biomatrices. Major knowledge gaps and future research directions are also discussed.
Assuntos
Arsênio/toxicidade , Arsenicais , Ácido Cacodílico/análogos & derivados , Células Cultivadas , Humanos , Metilação , Metiltransferases , OxirreduçãoRESUMO
Chronic exposure to inorganic arsenic (iAs) has been linked to diabetic phenotypes in both humans and mice. However, diabetogenic effects of iAs exposure during specific developmental windows have never been systematically studied. We have previously shown that in mice, combined preconception and in utero exposures to iAs resulted in impaired glucose homeostasis in male offspring. The goal of the present study was to determine if preconception exposure alone can contribute to this outcome. We have examined metabolic phenotypes in male and female offspring from dams and sires that were exposed to iAs in drinking water (0 or 200 µg As/L) for 10 weeks prior to mating. The effects of iAs exposure on gene expression profiles in parental germ cells, and pancreatic islets and livers from offspring were assessed using RNA sequencing. We found that iAs exposure significantly altered transcript levels of genes, including diabetes-related genes, in the sperm of sires. Notably, some of the same gene transcripts and the associated pathways were also altered in the liver of the offspring. The exposure had a more subtle effect on gene expression in maternal oocytes and in pancreatic islets of the offspring. In female offspring, the preconception exposure was associated with increased adiposity, but lower blood glucose after fasting and after glucose challenge. HOMA-IR, the indicator of insulin resistance, was also lower. In contrast, the preconception exposure had no effects on blood glucose measures in male offspring. However, males from parents exposed to iAs had higher plasma insulin after glucose challenge and higher insulinogenic index than control offspring, indicating a greater requirement for insulin to maintain glucose homeostasis. Our results suggest that preconception exposure may contribute to the development of diabetic phenotype in male offspring, possibly mediated through germ cell-associated inheritance. Future research can investigate role of epigenetics in this phenomenon. The paradoxical outcomes in female offspring, suggesting a protective effect of the preconception exposure, warrant further investigation.
Assuntos
Arsenitos/toxicidade , Diabetes Mellitus/induzido quimicamente , Regulação da Expressão Gênica/efeitos dos fármacos , Células Germinativas/efeitos dos fármacos , Ilhotas Pancreáticas/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Adiposidade/efeitos dos fármacos , Animais , Glicemia , Diabetes Mellitus/metabolismo , Feminino , Células Germinativas/metabolismo , Homeostase/efeitos dos fármacos , Insulina/sangue , Resistência à Insulina , Ilhotas Pancreáticas/metabolismo , Fígado/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Análise de Sequência de RNA , Fatores SexuaisRESUMO
To investigate the role of glutathione transferases (GSTs) in the metabolism of inorganic arsenic (iAs), we compared the disposition of iAs and its metabolites in wild-type mice and mice lacking genes encoding GST-P, -M and -T after exposure to 100 ppb iAs in drinking water. We found no differences between the two genotypes in the concentrations of total arsenic or arsenic species in urine, liver, and kidneys. No genotype-dependent differences were found in proportions of arsenicals in the tissues, and only small differences were observed in the urine. Thus, under these conditions, GST-P, -M and -T did not play a significant role in iAs metabolism in mice.
Assuntos
Arsênio/metabolismo , Animais , Arsênio/administração & dosagem , Arsênio/análise , Água Potável/administração & dosagem , Água Potável/análise , Água Potável/metabolismo , Exposição Ambiental/análise , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , CamundongosRESUMO
Inorganic arsenic (iAs) is an environmental diabetogen, but mechanisms underlying its diabetogenic effects are poorly understood. Exposures to arsenite (iAsIII) and its methylated metabolites, methylarsonite (MAsIII) and dimethylarsinite (DMAsIII), have been shown to inhibit glucose-stimulated insulin secretion (GSIS) in pancreatic ß-cells and isolated pancreatic islets. GSIS is regulated by complex mechanisms. Increase in ATP production through metabolism of glucose and other substrates is the ultimate trigger for GSIS in ß-cells. In the present study, we used metabolomics to identify metabolites and pathways perturbed in cultured INS-1 832/13 rat insulinoma cells and isolated murine pancreatic islets by exposures to iAsIII, MAsIII and DMAsIII. We found that the exposures perturbed multiple metabolites, which were enriched primarily in the pathways of amino acid, carbohydrate, phospholipid and carnitine metabolism. However, the effects of arsenicals in INS-1 832/13 cells differed from those in the islets and were exposure specific with very few overlaps between the three arsenicals. In INS-1 832/13 cells, all three arsenicals decreased succinate, a metabolite of Krebs cycle, which provides substrates for ATP synthesis in mitochondria. Acetylcarnitine was decreased consistently by exposures to arsenicals in both the cells and the islets. Acetylcarnitine is usually found in equilibrium with acetyl-CoA, which is the central metabolite in the catabolism of macronutrients and the key substrate for Krebs cycle. It is also thought to play an antioxidant function in mitochondria. Thus, while each of the three trivalent arsenicals perturbed specific metabolic pathways, which may or may not be associated with GSIS, all three arsenicals appeared to impair mechanisms that support ATP production or antioxidant defense in mitochondria. These results suggest that impaired ATP production and/or mitochondrial dysfunction caused by oxidative stress may be the mechanisms underlying the inhibition of GSIS in ß-cells exposed to trivalent arsenicals.
Assuntos
Arsenitos/toxicidade , Ácido Cacodílico/análogos & derivados , Metabolismo Energético/efeitos dos fármacos , Insulinoma/metabolismo , Ilhotas Pancreáticas/efeitos dos fármacos , Metaboloma , Neoplasias Pancreáticas/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Arsenitos/metabolismo , Biotransformação , Ácido Cacodílico/metabolismo , Ácido Cacodílico/toxicidade , Linhagem Celular Tumoral , Insulinoma/patologia , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , Masculino , Metabolômica , Metilação , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Estresse Oxidativo/efeitos dos fármacos , Neoplasias Pancreáticas/patologia , Ratos , Técnicas de Cultura de TecidosRESUMO
In humans and mice, in utero exposure to inorganic arsenic (iAs) is associated with adverse health outcomes later in life. The contribution of preconception exposure to the adverse outcomes in offspring has never been studied. Here combined in utero and postnatal exposures produce insulin resistance in two collaborative cross strains. Furthermore, combined preconception and in utero exposure resulted in increased birth weight and developed insulin resistance in one strain. Thus, preconception exposure to arsenic may contribute to the metabolic disorders later in life, but the susceptibility to the effects of this exposure is determined, at least in part, by genetics.
Assuntos
Arsênio/metabolismo , Arsênio/toxicidade , Desenvolvimento Fetal/efeitos dos fármacos , Útero/efeitos dos fármacos , Animais , Arsênio/administração & dosagem , Camundongos de Cruzamento Colaborativo , Feminino , Desenvolvimento Fetal/genética , Masculino , Camundongos , Fenótipo , Gravidez , Útero/metabolismoRESUMO
Chronic exposure to inorganic arsenic (iAs), a common drinking water and food contaminant, has been associated with an increased risk of type 2 diabetes in population studies worldwide. Several mechanisms underlying the diabetogenic effects of iAs have been proposed through laboratory investigations. We have previously shown that exposure to arsenite (iAs(III)) or its methylated trivalent metabolites, methylarsonite (MAs(III)) and dimethylarsinite (DMAs(III)), inhibits glucose-stimulated insulin secretion (GSIS) in pancreatic islets, without significant effects on insulin expression or insulin content. The goal of the present study was to determine if iAs(III) and/or its metabolites inhibit Ca2+ influx, an essential mechanism that regulates the release of insulin from ß cells in response to glucose. We found that in vitro exposures for 48 h to non-cytotoxic concentrations of iAs(III), MAs(III), and DMAs(III) impaired Ca2+ influx in isolated murine pancreatic islets stimulated with glucose. MAs(III) and DMAs(III) were more potent inhibitors of Ca2+ influx than iAs(III). These arsenicals also inhibited Ca2+ influx and GSIS in islets treated with depolarizing levels of potassium chloride in the absence of glucose. Treatment with Bay K8644, a Cav1.2 channel agonist, did not restore insulin secretion in arsenical-exposed islets. Tolbutamide, a KATP channel blocker, prevented inhibition of insulin secretion in MAs(III)- and DMAs(III)-exposed islets, but only marginally in islets exposed to iAs(III). Our findings suggest that iAs(III), MAs(III), and DMAs(III) inhibit glucose-stimulated Ca2+ influx in pancreatic islets, possibly by interfering with KATP and/or Cav1.2 channel function. Notably, the mechanisms underlying inhibition of GSIS by iAs(III) may differ from those of its trivalent methylated metabolites.
Assuntos
Arsenitos/toxicidade , Ácido Cacodílico/análogos & derivados , Cálcio/metabolismo , Glucose/farmacologia , Insulina/metabolismo , Ilhotas Pancreáticas/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Arsenitos/metabolismo , Ácido Cacodílico/metabolismo , Ácido Cacodílico/toxicidade , Canais de Cálcio Tipo L/metabolismo , Células Cultivadas , Ilhotas Pancreáticas/metabolismo , Canais KATP/metabolismo , Masculino , Metilação , Camundongos Endogâmicos C57BL , Poluentes Químicos da Água/metabolismoRESUMO
Diabetes is a metabolic disorder characterized by fasting hyperglycemia and impaired glucose tolerance. Laboratory and population studies have shown that inorganic arsenic (iAs) can impair these pathways. Other metals including cadmium (Cd) and manganese (Mn) have also been linked to diabetes phenotypes. MicroRNAs, short non-coding RNAs that regulate gene expression, have emerged as potential drivers of metabolic dysfunction. MicroRNAs responsive to metal exposures in vitro have also been reported in independent studies to regulate insulin secretion in vivo. We hypothesize that microRNA dysregulation may associate with and possibly contribute to insulin secretion impairment upon exposure to iAs, Cd, or Mn. We exposed insulin secreting rat insulinoma cells to non-cytotoxic concentrations of iAs (1 µM), Cd (5 µM), and Mn (25 µM) for 24 h followed by small RNA sequencing to identify dysregulated microRNAs. RNA sequencing was then performed to further investigate changes in gene expression caused by iAs exposure. While all three metals significantly inhibited glucose-stimulated insulin secretion, high-throughput sequencing revealed distinct microRNA profiles specific to each exposure. One of the most significantly upregulated microRNAs post-iAs treatment is miR-146a (~ + 2-fold), which is known to be activated by nuclear factor κB (NF-κB) signaling. Accordingly, we found by RNA-seq analysis that genes upregulated by iAs exposure are enriched in the NF-κB signaling pathway and genes down-regulated by iAs exposure are enriched in miR-146a binding sites and are involved in regulating beta cell function. Notably, iAs exposure caused a significant decrease in the expression of Camk2a, a calcium-dependent protein kinase that regulates insulin secretion, has been implicated in type 2 diabetes, and is a likely target of miR-146a. Further studies are needed to elucidate potential interactions among NF-kB, miR-146a, and Camk2a in the context of iAs exposure.
Assuntos
Arsenitos/toxicidade , Cádmio/toxicidade , Secreção de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/efeitos dos fármacos , Manganês/toxicidade , MicroRNAs/metabolismo , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Linhagem Celular , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Secreção de Insulina/genética , Células Secretoras de Insulina/metabolismo , MicroRNAs/genética , NF-kappa B/genética , NF-kappa B/metabolismo , Proinsulina/genética , Ratos , Regulação para CimaRESUMO
Mice have been frequently used to study the adverse effects of inorganic arsenic (iAs) exposure in laboratory settings. Like humans, mice metabolize iAs to monomethyl-As (MAs) and dimethyl-As (DMAs) metabolites. However, mice metabolize iAs more efficiently than humans, which may explain why some of the effects of iAs reported in humans have been difficult to reproduce in mice. In the present study, we searched for mouse strains in which iAs metabolism resembles that in humans. We examined iAs metabolism in male mice from 12 genetically diverse Collaborative Cross (CC) strains that were exposed to arsenite in drinking water (0.1 or 50 ppm) for 2 weeks. Concentrations of iAs and its metabolites were measured in urine and livers. Significant differences in total As concentration and in proportions of total As represented by iAs, MAs, and DMAs were observed between the strains. These differences were more pronounced in livers, particularly in mice exposed to 50 ppm iAs. In livers, large variations among the strains were found in percentage of iAs (15-48%), MAs (11-29%), and DMAs (29-66%). In contrast, DMAs represented 96-99% of total As in urine in all strains regardless of exposure. Notably, the percentages of As species in urine did not correlate with total As concentration in liver, suggesting that the urinary profiles were not representative of the internal exposure. In livers of mice exposed to 50 ppm, but not to 0.1 ppm iAs, As3mt expression correlated with percent of iAs and DMAs. No correlations were found between As3mt expression and the proportions of As species in urine regardless of exposure level. Although we did not find yet a CC strain in which proportions of As species in urine would match those reported in humans (typically 10-30% iAs, 10-20% MAs, 60-70% DMAs), CC strains characterized by low %DMAs in livers after exposure to 50 ppm iAs (suggesting inefficient iAs methylation) could be better models for studies aiming to reproduce effects of iAs described in humans.
Assuntos
Arsênio/farmacocinética , Poluentes Químicos da Água/farmacocinética , Animais , Arsênio/administração & dosagem , Relação Dose-Resposta a Droga , Variação Genética , Masculino , Camundongos , Especificidade da Espécie , Distribuição Tecidual , Poluentes Químicos da Água/administração & dosagemRESUMO
In humans, early life exposure to inorganic arsenic is associated with adverse health effects. Inorganic arsenic in utero or in early postnatal life also produces adverse health effects in offspring of pregnant mice that consumed drinking water containing low part per billion levels of inorganic arsenic. Because aggregate exposure of pregnant mice to inorganic arsenic from both drinking water and food has not been fully evaluated in experimental studies, quantifying arsenic exposure of the developing mouse is problematic. Here, we determined levels of total arsenic and arsenic species in natural ingredient rodent diets that are composed of many plant and animal-derived foodstuffs and in a purified ingredient rodent diet that is composed of a more restricted mixture of foodstuffs. In natural ingredient diets, total arsenic levels ranged from â¼60 to â¼400 parts per billion, and in the purified ingredient diet, total arsenic level was 13 parts per billion. Inorganic arsenic was the predominant arsenic species in trifluoroacetic acid extracts of each diet. Various exposure scenarios were evaluated using information on inorganic arsenic levels in diet and drinking water and on daily food and water consumption of pregnant mice. In a scenario in which pregnant mice consumed drinking water with 10 parts per billion of inorganic arsenic and a natural ingredient diet containing 89 parts per billion of inorganic arsenic, drinking water contributed only â¼20% of inorganic arsenic intake. Quantitation of arsenic species in diets used in studies in which drinking water is the nominal source of arsenic exposure provides more accurate dosimetry and improves understanding of dose-response relations. Use of purified ingredient diets will minimize the discrepancy between the target dosage level and the actual dosage level attained in utero exposure studies designed to evaluate effects of low level exposure to inorganic arsenic.
Assuntos
Arsênio/análise , Arsênio/toxicidade , Dieta , Útero/efeitos dos fármacos , Animais , Arsênio/administração & dosagem , Relação Dose-Resposta a Droga , Água Potável/química , Exposição Ambiental/análise , Feminino , Camundongos , GravidezRESUMO
Arsenic (As) is a toxic metalloid. Inorganic arsenic (iAs) is a form of As commonly found in drinking water and in some foods. Overwhelming evidence suggests that people chronically exposed to iAs are at risk of developing cancer or cardiovascular, neurological, and metabolic diseases. Although the mechanisms underlying iAs-associated illness remain poorly characterized, a growing body of literature raises the possibility that microRNAs (miRNAs), post-transcriptional gene suppressors, may serve as mediators and/or early indicators of the pathologies associated with iAs exposure. To characterize the circulating miRNA profiles of individuals chronically exposed to iAs, samples of plasma were collected from 109 healthy residents of the city of Zimapán and the Lagunera area in Mexico, the regions with historically high exposures to iAs in drinking water. These plasma samples were analyzed for small RNAs using high-throughput sequencing and for iAs and its methylated metabolites. Associations between plasma levels of arsenic species and miRNAs were evaluated. Six circulating miRNAs (miRs-423-5p, -142-5p -2, -423-5p +1, -320c-1, -320c-2, and -454-5p), two of which have been previously linked to cardiovascular disease and diabetes (miRs-423-5p, -454-5p), were found to be significantly correlated with plasma MAs. No miRNAs were associated with plasma iAs or DMAs after correction for multiple testing. These miRNAs may represent mechanistic links between iAs exposure and disease or serve as markers of disease risks associated with this exposure.
Assuntos
Arsênio , MicroRNA Circulante , Água Potável , MicroRNAs , Humanos , MéxicoRESUMO
Inorganic arsenic (iAs) is an established environmental diabetogen. The link between iAs exposure and diabetes is supported by evidence from adult human cohorts and adult laboratory animals. The contribution of prenatal iAs exposure to the development of diabetes and underlying mechanisms are understudied. The role of factors that modulate iAs metabolism and toxicity in adults and their potential to influence diabetogenic effects of prenatal iAs exposure are also unclear. The goal of this study was to determine if prenatal exposure to iAs impairs glucose metabolism in mice and if maternal supplementation with folate and methylcobalamin (B12) can modify this outcome. C57BL/6J dams were exposed to iAs in drinking water (0, 100, and 1000 µg As/L) and fed a folate/B12 adequate or supplemented diet from before mating to birth of offspring. After birth, dams and offspring drank deionized water and were fed the folate/B12 adequate diet. The metabolic phenotype of offspring was assessed over the course of 14 weeks. Male offspring from iAs-exposed dams fed the folate/B12-adequate diet developed fasting hyperglycemia and insulin resistance. Maternal folate/B12 supplementation rescued this phenotype but had only marginal effects on iAs metabolism in dams. The diabetogenic effects of prenatal iAs exposure in male offspring were not associated with changes in global DNA methylation in the liver. Only minimal effects of prenatal iAs exposure or maternal supplementation were observed in female offspring. These results suggest that prenatal iAs exposure impairs glucose metabolism in a sex-specific manner and that maternal folate/B12 supplementation may improve the metabolic phenotype in offspring. Further studies are needed to identify the mechanisms underlying these effects.
Assuntos
Arsenitos/toxicidade , Poluentes Ambientais/toxicidade , Ácido Fólico/farmacologia , Glucose/metabolismo , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Vitamina B 12/análogos & derivados , Animais , Arsenitos/urina , Glicemia/análise , Metilação de DNA/efeitos dos fármacos , Suplementos Nutricionais , Relação Dose-Resposta a Droga , Poluentes Ambientais/urina , Feminino , Ácido Fólico/administração & dosagem , Ácido Fólico/sangue , Fígado/efeitos dos fármacos , Fígado/crescimento & desenvolvimento , Fígado/metabolismo , Exposição Materna , Camundongos Endogâmicos C57BL , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Efeitos Tardios da Exposição Pré-Natal/prevenção & controle , Fatores Sexuais , Vitamina B 12/administração & dosagem , Vitamina B 12/farmacologiaRESUMO
Growing evidence suggests that exposure to environmental contaminants contributes to the current diabetes epidemic. Inorganic arsenic (iAs), a drinking water and food contaminant, is one of the most widespread environmental diabetogens according to epidemiological studies. Several schemes have been proposed to explain the diabetogenic effects of iAs exposure; however, the exact mechanism remains unknown. We have shown that in vitro exposure to low concentrations of arsenite (iAsIII) or its trivalent methylated metabolites, methylarsonite (MAsIII) and dimethylarsinite (DMAsIII), inhibits glucose-stimulated insulin secretion (GSIS) from isolated pancreatic islets, with little effect on insulin transcription or total insulin content. The goal of this study was to determine if exposure to trivalent arsenicals impairs mitochondrial metabolism, which plays a key role in the regulation of GSIS in ß cells. We used a Seahorse extracellular flux analyzer to measure oxygen consumption rate (OCR), a proxy for mitochondrial metabolism, in cultured INS-1 832/13 ß cells exposed to iAsIII, MAsIII, or DMAsIII and stimulated with either glucose or pyruvate, a final product of glycolysis and a substrate for the Krebs cycle. We found that 24-h exposure to 2 µM iAsIII or 0.375-0.5 µM MAsIII inhibited OCR in both glucose- and pyruvate-stimulated ß cells in a manner that closely paralleled GSIS inhibition. In contrast, 24-h exposure to DMAsIII (up to 2 µM) had no effects on either OCR or GSIS. These results suggest that iAsIII and MAsIII may impair GSIS in ß cells by inhibiting mitochondrial metabolism, and that at least one target of these arsenicals is pyruvate decarboxylation or downstream reactions.
Assuntos
Arsenitos/toxicidade , Ácido Cacodílico/análogos & derivados , Secreção de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Animais , Ácido Cacodílico/toxicidade , Linhagem Celular , Sobrevivência Celular , Glucose/metabolismo , Células Secretoras de Insulina/metabolismo , Mitocôndrias/metabolismo , Oxigênio/metabolismo , RatosRESUMO
A method for analysis of toxicologically important arsenic species in blood plasma and whole blood by selective hydride generation with cryotrapping (HG-CT) coupled either to atomic absorption spectrometry (AAS) with a quartz multiatomizer or to inductively coupled plasma mass spectrometry (ICPMS) has been validated. Sample preparation, which involved only 5 times dilution with addition of Triton X-100, Antifoam B, and l-cysteine, suppressed excessive foaming in a hydride generator. Calibration slopes for whole blood and blood plasma spiked with arsenate, monomethylarsonate, and dimethylarsinate at 0.25-1 µg L-1 As and 0.025-0.1 µg L-1 As for AAS and ICPMS detection, respectively, did not differ from slopes in aqueous solutions. HG-CT-AAS was used to analyze samples with elevated levels of arsenic species-blood plasma from patients treated with arsenic trioxide for acute promyelocytic leukemia and whole blood from mice fed an arsenic-containing diet. A good agreement between results of the direct analysis and analysis after mild digestion in phosphoric acid proved the good efficiency of the direct HG-CT procedure for the arsenic species in these types of biological samples. In the next step, plasma and whole blood from healthy donors that were spiked with the plasma from leukemia patients at levels of 0.15-0.4 µg L-1 As were analyzed by direct HG-CT-ICPMS. Good recoveries for all species even at these low levels (88-104%) were obtained. Limits of detection in blood and plasma were 0.014 µg L-1 for inorganic arsenic and below 0.002 µg L-1 As for methylated arsenic species. Thus, the ultrasensitive direct HG-CT-ICPMS method is uniquely suited for analyses of blood plasma and whole blood from individuals at low exposure levels.
Assuntos
Arsênio/sangue , Espectrometria de Massas/métodos , Animais , Arsênio/administração & dosagem , Voluntários Saudáveis , Humanos , CamundongosRESUMO
PURPOSE OF REVIEW: The goal of this review is to delineate the following: (1) the primary means of inorganic arsenic (iAs) exposure for human populations, (2) the adverse public health outcomes associated with chronic iAs exposure, (3) the pathophysiological connection between arsenic and type 2 diabetes (T2D), and (4) the incipient evidence for microRNAs as candidate mechanistic links between iAs exposure and T2D. RECENT FINDINGS: Exposure to iAs in animal models has been associated with the dysfunction of several different cell types and tissues, including liver and pancreatic islets. Many microRNAs that have been identified as responsive to iAs exposure under in vitro and/or in vivo conditions have also been shown in independent studies to regulate processes that underlie T2D etiology, such as glucose-stimulated insulin secretion from pancreatic beta cells. Defects in insulin secretion could be, in part, associated with aberrant microRNA expression and activity. Additional in vivo studies need to be performed with standardized concentrations and durations of arsenic exposure in order to evaluate rigorously microRNAs as molecular drivers of iAs-associated diabetes.