Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Physiol ; 592(7): 1619-36, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24396062

RESUMO

Intrinsically photosensitive retinal ganglion cells (ipRGCs) mediate non-image-forming visual responses, including pupillary constriction, circadian photoentrainment and suppression of pineal melatonin secretion. Five morphological types of ipRGCs, M1-M5, have been identified in mice. In order to understand their functions better, we studied the photoresponses of all five cell types, by whole-cell recording from fluorescently labelled ipRGCs visualized using multiphoton microscopy. All ipRGC types generated melanopsin-based ('intrinsic') as well as synaptically driven ('extrinsic') light responses. The intrinsic photoresponses of M1 cells were lower threshold, higher amplitude and faster than those of M2-M5. The peak amplitudes of extrinsic light responses differed among the ipRGC types; however, the responses of all cell types had comparable thresholds, kinetics and waveforms, and all cells received rod input. While all five types exhibited inhibitory amacrine-cell and excitatory bipolar-cell inputs from the 'on' channel, M1 and M3 received additional 'off'-channel inhibition, possibly through their 'off'-sublamina dendrites. The M2-M5 ipRGCs had centre-surround-organized receptive fields, implicating a capacity to detect spatial contrast. In contrast, the receptive fields of M1 cells lacked surround antagonism, which might be caused by the surround of the inhibitory input nullifying the surround of the excitatory input. All ipRGCs responded robustly to a wide range of motion speeds, and M1-M4 cells appeared tuned to different speeds, suggesting that they might analyse the speed of motion. Retrograde labelling revealed that M1-M4 cells project to the superior colliculus, suggesting that the contrast and motion information signalled by these cells could be used by this sensorimotor area to detect novel objects and motion in the visual field.


Assuntos
Transdução de Sinal Luminoso/efeitos da radiação , Luz , Células Ganglionares da Retina/efeitos da radiação , Percepção Visual/efeitos da radiação , Animais , Sensibilidades de Contraste/efeitos da radiação , Potenciais Evocados , Feminino , Subunidades alfa de Proteínas de Ligação ao GTP/deficiência , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Proteínas Heterotriméricas de Ligação ao GTP/deficiência , Proteínas Heterotriméricas de Ligação ao GTP/genética , Cinética , Masculino , Camundongos , Camundongos Knockout , Microscopia de Fluorescência por Excitação Multifotônica , Percepção de Movimento/efeitos da radiação , Reconhecimento Visual de Modelos/efeitos da radiação , Estimulação Luminosa , Células Ganglionares da Retina/classificação , Células Ganglionares da Retina/metabolismo , Percepção Espacial/efeitos da radiação , Colículos Superiores/metabolismo , Colículos Superiores/efeitos da radiação , Transducina/deficiência , Transducina/genética , Visão Ocular/efeitos da radiação , Campos Visuais/efeitos da radiação , Vias Visuais/metabolismo , Vias Visuais/efeitos da radiação
2.
Proc Natl Acad Sci U S A ; 108(47): 19060-5, 2011 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-22065784

RESUMO

Topographic maps are the primary means of relaying spatial information in the brain. Understanding the mechanisms by which they form has been a goal of experimental and theoretical neuroscientists for decades. The projection of the retina to the superior colliculus (SC)/tectum has been an important model used to show that graded molecular cues and patterned retinal activity are required for topographic map formation. Additionally, interaxon competition has been suggested to play a role in topographic map formation; however, this view has been recently challenged. Here we present experimental and computational evidence demonstrating that interaxon competition for target space is necessary to establish topography. To test this hypothesis experimentally, we determined the nature of the retinocollicular projection in Math5 (Atoh7) mutant mice, which have severely reduced numbers of retinal ganglion cell inputs into the SC. We find that in these mice, retinal axons project to the anteromedialj portion of the SC where repulsion from ephrin-A ligands is minimized and where their attraction to the midline is maximized. This observation is consistent with the chemoaffinity model that relies on axon-axon competition as a mapping mechanism. We conclude that chemical labels plus neural activity cannot alone specify the retinocollicular projection; instead axon-axon competition is necessary to create a map. Finally, we present a mathematical model for topographic mapping that incorporates molecular labels, neural activity, and axon competition.


Assuntos
Axônios/fisiologia , Modelos Biológicos , Percepção Espacial/fisiologia , Vias Visuais/fisiologia , Percepção Visual/fisiologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fluorescência , Humanos , Camundongos , Camundongos Mutantes , Proteínas do Tecido Nervoso/genética , Retina/fisiologia , Estatísticas não Paramétricas , Colículos Superiores/fisiologia
3.
Science ; 356(6342): 1031-1034, 2017 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-28596336

RESUMO

Humans are highly visual. Retinal ganglion cells (RGCs), the neurons that connect the eyes to the brain, fail to regenerate after damage, eventually leading to blindness. Here, we review research on regeneration and repair of the optic system. Intrinsic developmental growth programs can be reactivated in RGCs, neural activity can enhance RGC regeneration, and functional reformation of eye-to-brain connections is possible, even in the adult brain. Transplantation and gene therapy may serve to replace or resurrect dead or injured retinal neurons. Retinal prosthetics that can restore vision in animal models may too have practical power in the clinical setting. Functional restoration of sight in certain forms of blindness is likely to occur in human patients in the near future.


Assuntos
Células Ganglionares da Retina/patologia , Células Ganglionares da Retina/fisiologia , Animais , Axônios/fisiologia , Cegueira/patologia , Cegueira/terapia , Cicatriz , Humanos , Inflamação/patologia , Proteínas da Mielina/metabolismo , Nervo Óptico/fisiologia , Regeneração , Transplante de Células-Tronco
4.
Neural Dev ; 9: 25, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25377639

RESUMO

BACKGROUND: Spontaneous retinal activity (SRA) is important during eye-specific segregation within the dorsal lateral geniculate nucleus (dLGN), but the feature(s) of activity critical for retinogeniculate refinement are controversial. Pharmacologically or genetically manipulating cholinergic signaling during SRA perturbs correlated retinal ganglion cell (RGC) spiking and disrupts eye-specific retinofugal refinement in vivo, consistent with an instructive role for SRA during visual system development. Paradoxically, ablating the starburst amacrine cells (SACs) that generate cholinergic spontaneous activity disrupts correlated RGC firing without impacting retinal activity levels or eye-specific segregation in the dLGN. Such experiments suggest that patterned SRA during retinal waves is not critical for eye-specific refinement and instead, normal activity levels are permissive for retinogeniculate development. Here we revisit the effects of ablating the cholinergic network during eye-specific segregation and show that SAC ablation disrupts, but does not eliminate, retinal waves with no concomitant impact on normal eye-specific segregation in the dLGN. RESULTS: We induced SAC ablation in postnatal ferret pups beginning at birth by intraocular injection of a novel immunotoxin selective for the ferret vesicular acetylcholine transporter (Ferret VAChT-Sap). Through dual-patch whole-cell and multi-electrode array recording we found that SAC ablation altered SRA patterns and led to significantly smaller retinal waves compared with controls. Despite these defects, eye-specific segregation was normal. Further, interocular competition for target territory in the dLGN proceeded in cases where SAC ablation was asymmetric in the two eyes. CONCLUSIONS: Our data demonstrate normal eye-specific retinogeniculate development despite significant abnormalities in patterned SRA. Comparing our current results with earlier studies suggests that defects in retinal wave size, absolute levels of SRA, correlations between RGC pairs, RGC burst frequency, high frequency RGC firing during bursts, and the number of spikes per RGC burst are each uncorrelated with abnormalities in eye-specific segregation in the dLGN. An increase in the fraction of asynchronous spikes occurring outside of bursts and waves correlates with eye-specific segregation defects in studies reported to date. These findings highlight the relative importance of different features of SRA while providing additional constraints for computational models of Hebbian plasticity mechanisms in the developing visual system.


Assuntos
Corpos Geniculados/fisiologia , Retina/fisiologia , Vias Visuais/fisiologia , Animais , Animais Recém-Nascidos , Beclometasona , Potenciais Evocados/fisiologia , Feminino , Furões , Corpos Geniculados/crescimento & desenvolvimento , Imunotoxinas/toxicidade , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/fisiologia , Técnicas de Patch-Clamp , Gravidez , Retina/citologia , Retina/efeitos dos fármacos , Células Ganglionares da Retina/fisiologia , Saponinas/toxicidade , Estatística como Assunto , Proteínas de Transporte Vesicular/toxicidade , Vias Visuais/efeitos dos fármacos , Vias Visuais/lesões
5.
Neuron ; 64(2): 200-12, 2009 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-19874788

RESUMO

During development, retinal axons project coarsely within their visual targets before refining to form organized synaptic connections. Spontaneous retinal activity, in the form of acetylcholine-driven retinal waves, is proposed to be necessary for establishing these projection patterns. In particular, both axonal terminations of retinal ganglion cells (RGCs) and the size of receptive fields of target neurons are larger in mice that lack the beta2 subunit of the nicotinic acetylcholine receptor (beta2KO). Here, using a large-scale, high-density multielectrode array to record activity from hundreds of RGCs simultaneously, we present analysis of early postnatal retinal activity from both wild-type (WT) and beta2KO retinas. We find that beta2KO retinas have correlated patterns of activity, but many aspects of these patterns differ from those of WT retina. Quantitative analysis suggests that wave directionality, coupled with short-range correlated bursting patterns of RGCs, work together to refine retinofugal projections.


Assuntos
Potenciais de Ação/fisiologia , Retina/citologia , Células Ganglionares da Retina/fisiologia , Vias Visuais/fisiologia , Potenciais de Ação/genética , Análise de Variância , Animais , Animais Recém-Nascidos , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Neurológicos , Mutação/genética , Probabilidade , Receptores Nicotínicos/deficiência , Temperatura , Fatores de Tempo
6.
Neuron ; 62(3): 327-34, 2009 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-19447089

RESUMO

Motion detection is an essential component of visual processing. On-Off direction-selective retinal ganglion cells (On-Off DSGCs) detect objects moving along specific axes of the visual field due to their precise retinal circuitry. The brain circuitry of On-Off DSGCs, however, is largely unknown. We report a mouse with GFP expressed selectively by the On-Off DSGCs that detect posterior motion (On-Off pDSGCs), allowing two-photon targeted recordings of their light responses and delineation of their complete map of central connections. On-Off pDSGCs project exclusively to the dorsal lateral geniculate nucleus and superior colliculus and in both targets form synaptic lamina that are separate from a lamina corresponding to non-DSGCs. Thus, individual On-Off DSGC subtypes are molecularly distinct and establish circuits that map specific qualities of directional motion to dedicated subcortical areas. This suggests that each RGC subtype represents a unique parallel pathway whose synaptic specificity in the retina is recapitulated in central targets.


Assuntos
Mapeamento Encefálico , Corpos Geniculados/fisiologia , Percepção de Movimento/fisiologia , Células Ganglionares da Retina/fisiologia , Colículos Superiores/fisiologia , Vias Visuais/fisiologia , Animais , Corpos Geniculados/citologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Substâncias Luminescentes/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células Ganglionares da Retina/classificação , Células Ganglionares da Retina/metabolismo , Colículos Superiores/citologia , Sinapses/metabolismo , Vias Visuais/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA