Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(16): 7056-7065, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38608141

RESUMO

The sources and sinks of nitrous oxide, as control emissions to the atmosphere, are generally poorly constrained for most environmental systems. Initial depth-resolved analysis of nitrous oxide flux from observation wells and the proximal surface within a nitrate contaminated aquifer system revealed high subsurface production but little escape from the surface. To better understand the environmental controls of production and emission at this site, we used a combination of isotopic, geochemical, and molecular analyses to show that chemodenitrification and bacterial denitrification are major sources of nitrous oxide in this subsurface, where low DO, low pH, and high nitrate are correlated with significant nitrous oxide production. Depth-resolved metagenomes showed that consumption of nitrous oxide near the surface was correlated with an enrichment of Clade II nitrous oxide reducers, consistent with a growing appreciation of their importance in controlling release of nitrous oxide to the atmosphere. Our work also provides evidence for the reduction of nitrous oxide at a pH of 4, well below the generally accepted limit of pH 5.


Assuntos
Óxido Nitroso , Óxido Nitroso/metabolismo , Bactérias/metabolismo , Oxirredutases/metabolismo , Desnitrificação
2.
Proc Natl Acad Sci U S A ; 117(9): 4823-4830, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32071230

RESUMO

Ammonia oxidation to nitrite and its subsequent oxidation to nitrate provides energy to the two populations of nitrifying chemoautotrophs in the energy-starved dark ocean, driving a coupling between reduced inorganic nitrogen (N) pools and production of new organic carbon (C) in the dark ocean. However, the relationship between the flux of new C production and the fluxes of N of the two steps of oxidation remains unclear. Here, we show that, despite orders-of-magnitude difference in cell abundances between ammonia oxidizers and nitrite oxidizers, the two populations sustain similar bulk N-oxidation rates throughout the deep waters with similarly high affinities for ammonia and nitrite under increasing substrate limitation, thus maintaining overall homeostasis in the oceanic nitrification pathway. Our observations confirm the theoretical predictions of a redox-informed ecosystem model. Using balances from this model, we suggest that consistently low ammonia and nitrite concentrations are maintained when the two populations have similarly high substrate affinities and their loss rates are proportional to their maximum growth rates. The stoichiometric relations between the fluxes of C and N indicate a threefold to fourfold higher C-fixation efficiency per mole of N oxidized by ammonia oxidizers compared to nitrite oxidizers due to nearly identical apparent energetic requirements for C fixation of the two populations. We estimate that the rate of chemoautotrophic C fixation amounts to ∼1 × 1013 to ∼2 × 1013 mol of C per year globally through the flux of ∼1 × 1014 to ∼2 × 1014 mol of N per year of the two steps of oxidation throughout the dark ocean.

3.
Environ Microbiol ; 24(11): 5546-5560, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36053980

RESUMO

Bacillus cereus strain CPT56D-587-MTF (CPTF) was isolated from the highly contaminated Oak Ridge Reservation (ORR) subsurface. This site is contaminated with high levels of nitric acid and multiple heavy metals. Amplicon sequencing of the 16S rRNA genes (V4 region) in sediment from this area revealed an amplicon sequence variant (ASV) with 100% identity to the CPTF 16S rRNA sequence. Notably, this CPTF-matching ASV had the highest relative abundance in this community survey, with a median relative abundance of 3.77% and comprised 20%-40% of reads in some samples. Pangenomic analysis revealed that strain CPTF has expanded genomic content compared to other B. cereus species-largely due to plasmid acquisition and expansion of transposable elements. This suggests that these features are important for rapid adaptation to native environmental stressors. We connected genotype to phenotype in the context of the unique geochemistry of the site. These analyses revealed that certain genes (e.g. nitrate reductase, heavy metal efflux pumps) that allow this strain to successfully occupy the geochemically heterogenous microniches of its native site are characteristic of the B. cereus species while others such as acid tolerance are mobile genetic element associated and are generally unique to strain CPTF.


Assuntos
Bacillus cereus , Metais Pesados , RNA Ribossômico 16S/genética , Bacillus cereus/genética , Genômica , Filogenia
4.
Biotechnol Bioeng ; 119(9): 2413-2422, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35680566

RESUMO

Refining the energetic costs of cellular maintenance is essential for predicting microbial growth and survival in the environment. Here, we evaluate a simple batch culture method to quantify energy partitioning between growth and maintenance using microcalorimetry and thermodynamic modeling. The constants derived from the batch culture system were comparable to those that have been reported from meta-analyses of data derived from chemostat studies. The model accurately predicted temperature-dependent biomass yield and the upper temperature limit of growth for Desulfovibrio alaskensis G20, suggesting the method may have broad application. An Arrhenius temperature dependence for the specific energy consumption rate, inferred from substrate consumption and heat evolution, was observed over the entire viable temperature range. By combining this relationship for specific energy consumption rates and observed specific growth rates, the model describes an increase in nongrowth associated maintenance at higher temperatures and the corresponding decrease in energy available for growth. This analytical and thermodynamic formulation suggests that simply monitoring heat evolution in batch culture could be a useful complement to the recognized limitations of estimating maintenance using extrapolation to zero growth in chemostats.


Assuntos
Técnicas de Cultura Celular por Lotes , Biomassa , Temperatura , Termodinâmica
5.
Arch Microbiol ; 204(9): 560, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35978059

RESUMO

A betaproteobacterial chemolithotrophic ammonia-oxidizing bacterium designated APG5T was isolated from supralittoral sand of the Edmonds City Beach, WA, USA. Growth was observed at 10-35 °C (optimum, 30 °C), pH 5-9 (optimum, pH 8) and ammonia concentrations as high as 100 mM (optimum, 1-30 mM NH4Cl). The strain grows optimally in a freshwater medium but tolerates up to 400 mM NaCl. It is most closely related to 'Nitrosomonas ureae' (96.7% 16S rRNA and 92.4% amoA sequence identity). The 3.75-Mbp of AGP5T draft genome contained a single rRNA operon and all necessary tRNA genes and has the lowest G+C content (43.5%) when compared to the previously reported genomes of reference strains in cluster 6 Nitrosomonas. Based on an average nucleotide identity of 82% with its closest relative ('N. ureae' Nm10T) and the suggested species boundary of 95-96%, a new species Nitrosomonas supralitoralis sp. nov. is proposed. The type strain of Nitrosomonas supralitoralis is APG5T (= NCIMB 14870T = ATCC TSD-116T).


Assuntos
Amônia , Areia , DNA Bacteriano/química , DNA Bacteriano/genética , Nitrosomonas/genética , Oxirredução , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
6.
Environ Microbiol ; 23(11): 6828-6843, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34554631

RESUMO

The use of nitrogen fertilizer on bioenergy crops such as switchgrass results in increased costs, nitrogen leaching and emissions of N2 O, a potent greenhouse gas. Intercropping with nitrogen-fixing alfalfa has been proposed as an environmentally sustainable alternative, but the effects of synthetic fertilizer versus intercropping on soil microbial community functionality remain uncharacterized. We analysed 24 metagenomes from the upper soil layer of agricultural fields from Prosser, WA over two growing seasons and representing three agricultural practices: unfertilized switchgrass (control), fertilized switchgrass and switchgrass intercropped with alfalfa. The synthetic fertilization and intercropping did not result in major shifts of microbial community taxonomic and functional composition compared with the control plots, but a few significant changes were noted. Most notably, mycorrhizal fungi, ammonia-oxidizing archaea and bacteria increased in abundance with intercropping and fertilization. However, only betaproteobacterial ammonia-oxidizing bacteria abundance in fertilized plots significantly correlated to N2 O emission and companion qPCR data. Collectively, a short period of intercropping elicits minor but significant changes in the soil microbial community toward nitrogen preservation and that intercropping may be a viable alternative to synthetic fertilization.


Assuntos
Microbiota , Micorrizas , Panicum , Agricultura/métodos , Fertilizantes/análise , Medicago sativa/microbiologia , Microbiota/genética , Micorrizas/química , Nitrogênio/análise , Panicum/microbiologia , Solo/química , Microbiologia do Solo
7.
Artigo em Inglês | MEDLINE | ID: mdl-34406920

RESUMO

A novel mesophilic and aerobic ammonia-oxidizing archaeon of the phylum Thaumarchaeota, strain NM25T, was isolated from coastal eelgrass zone sediment sampled in Shimoda (Japan). The cells were rod-shaped with an S-layer cell wall. The temperature range for growth was 20-37 °C, with an optimum at 30 °C. The pH range for growth was pH 6.1-7.7, with an optimum at pH 7.1. The salinity range for growth was 5-40 %, with an optimum range of 15-32 %. Cells obtained energy from ammonia oxidation and used bicarbonate as a carbon source. Utilization of urea was not observed for energy generation and growth. Strain NM25T required a hydrogen peroxide scavenger, such as α-ketoglutarate, pyruvate or catalase, for sustained growth on ammonia. Growth of strain NM25T was inhibited by addition of low concentrations of some organic compounds and organic mixtures, including complete inhibition by glycerol, peptone and yeast extract. Phylogenetic analysis of four concatenated housekeeping genes (16S rRNA, rpoB, rpsI and atpD) and concatenated AmoA, AmoB, AmoC amino acid sequences indicated that the isolate is similar to members of the genus Nitrosopumilus. The closest relative is Nitrosopumilus ureiphilus PS0T with sequence similarities of 99.5 % for the 16S rRNA gene and 97.2 % for the amoA gene. Genome relatedness between strain NM25T and N. ureiphilus PS0T was assessed by average nucleotide identity and digital DNA-DNA hybridization, giving results of 85.4 and 40.2 %, respectively. On the basis of phenotypic, genotypic and phylogenetic data, strain NM25T represents a novel species of the genus Nitrosopumilus, for which the name sp. nov, is proposed. The type strain is NM25T (=NBRC 111181T=ATCC TSD-147T).


Assuntos
Amônia , Archaea , Sedimentos Geológicos/microbiologia , Filogenia , Áreas Alagadas , Archaea/classificação , Archaea/isolamento & purificação , Genes Arqueais , Japão , Hibridização de Ácido Nucleico , Oxirredução , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
8.
Environ Sci Technol ; 55(4): 2662-2673, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33539079

RESUMO

Although several molecular-based studies have demonstrated the involvement of ammonia-oxidizing archaea (AOA) in ammonia oxidation in wastewater treatment plants (WWTPs), factors affecting the persistence and growth of AOA in these engineered systems have not been resolved. Here, we show a seasonal prevalence of AOA in a full-scale WWTP (Shatin, Hong Kong SAR) over a 6-year period of observation, even outnumbering ammonia-oxidizing bacteria in the seasonal peaks in 3 years, which may be due to the high bioavailable copper concentrations. Comparative analysis of three metagenome-assembled genomes of group I.1a AOA obtained from the activated sludge and 16S rRNA gene sequences recovered from marine sediments suggested that the seawater used for toilet flushing was the primary source of the WWTP AOA. A rare AOA population in the estuarine source water became transiently abundant in the WWTP with a metagenome-based relative abundance of up to 1.3% over three seasons of observation. Correlation-based network analysis revealed a robust co-occurrence relationship between these AOA and organisms potentially active in nitrite oxidation. Moreover, a strong correlation between the dominant AOA and an abundant proteobacterial organism suggested that capacity for extracellular polymeric substance production by the proteobacterium could provide a niche for AOA within bioaggregates. Together, the study highlights the importance of long-term observation in identifying biotic and abiotic factors governing population dynamics in open systems such as full-scale WWTPs.


Assuntos
Archaea , Purificação da Água , Amônia , Archaea/genética , Bactérias/genética , Matriz Extracelular de Substâncias Poliméricas , Hong Kong , Oxirredução , Filogenia , Prevalência , RNA Ribossômico 16S/genética , Estações do Ano , Águas Residuárias
9.
Proc Natl Acad Sci U S A ; 114(2): 364-369, 2017 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-28028206

RESUMO

Organisms within all domains of life require the cofactor cobalamin (vitamin B12), which is produced only by a subset of bacteria and archaea. On the basis of genomic analyses, cobalamin biosynthesis in marine systems has been inferred in three main groups: select heterotrophic Proteobacteria, chemoautotrophic Thaumarchaeota, and photoautotrophic Cyanobacteria. Culture work demonstrates that many Cyanobacteria do not synthesize cobalamin but rather produce pseudocobalamin, challenging the connection between the occurrence of cobalamin biosynthesis genes and production of the compound in marine ecosystems. Here we show that cobalamin and pseudocobalamin coexist in the surface ocean, have distinct microbial sources, and support different enzymatic demands. Even in the presence of cobalamin, Cyanobacteria synthesize pseudocobalamin-likely reflecting their retention of an oxygen-independent pathway to produce pseudocobalamin, which is used as a cofactor in their specialized methionine synthase (MetH). This contrasts a model diatom, Thalassiosira pseudonana, which transported pseudocobalamin into the cell but was unable to use pseudocobalamin in its homolog of MetH. Our genomic and culture analyses showed that marine Thaumarchaeota and select heterotrophic bacteria produce cobalamin. This indicates that cobalamin in the surface ocean is a result of de novo synthesis by heterotrophic bacteria or via modification of closely related compounds like cyanobacterially produced pseudocobalamin. Deeper in the water column, our study implicates Thaumarchaeota as major producers of cobalamin based on genomic potential, cobalamin cell quotas, and abundance. Together, these findings establish the distinctive roles played by abundant prokaryotes in cobalamin-based microbial interdependencies that sustain community structure and function in the ocean.


Assuntos
Vitamina B 12/metabolismo , 5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase/metabolismo , Archaea/metabolismo , Cianobactérias/metabolismo , Diatomáceas/metabolismo , Ecossistema , Processos Heterotróficos/fisiologia , Oceanos e Mares
10.
Environ Microbiol ; 21(1): 152-163, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30289197

RESUMO

Anthropogenic nitrate contamination is a serious problem in many natural environments. Nitrate removal by microbial action is dependent on the metal molybdenum (Mo), which is required by nitrate reductase for denitrification and dissimilatory nitrate reduction to ammonium. The soluble form of Mo, molybdate (MoO4 2- ), is incorporated into and adsorbed by iron (Fe) and aluminium (Al) (oxy) hydroxide minerals. Herein we used Oak Ridge Reservation (ORR) as a model nitrate-contaminated acidic environment to investigate whether the formation of Fe- and Al-precipitates could impede microbial nitrate removal by depleting Mo. We demonstrate that Fe and Al mineral formation that occurs as the pH of acidic synthetic groundwater is increased, decreases soluble Mo to low picomolar concentrations, a process proposed to mimic environmental diffusion of acidic contaminated groundwater. Analysis of ORR sediments revealed recalcitrant Mo in the contaminated core that co-occurred with Fe and Al, consistent with Mo scavenging by Fe/Al precipitates. Nitrate removal by ORR isolate Pseudomonas fluorescens N2A2 is virtually abolished by Fe/Al precipitate-induced Mo depletion. The depletion of naturally occurring Mo in nitrate- and Fe/Al-contaminated acidic environments like ORR or acid mine drainage sites has the potential to impede microbial-based nitrate reduction thereby extending the duration of nitrate in the environment.


Assuntos
Alumínio/química , Meio Ambiente , Ferro/química , Molibdênio/química , Ciclo do Nitrogênio , Poluentes Ambientais/química , Poluentes Ambientais/metabolismo , Poluentes Ambientais/farmacologia , Sedimentos Geológicos/química , Água Subterrânea/química , Microbiota/efeitos dos fármacos , Molibdênio/metabolismo , Molibdênio/farmacologia , Nitrato Redutase/metabolismo , Nitratos/metabolismo , Pseudomonas fluorescens/efeitos dos fármacos , Pseudomonas fluorescens/metabolismo
11.
Environ Microbiol ; 20(6): 2195-2206, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29687586

RESUMO

Most agricultural N2 O emissions are a consequence of microbial transformations of nitrogen (N) fertilizer, and mitigating increases in N2 O emission will depend on identifying microbial sources and variables influencing their activities. Here, using controlled microcosm and field studies, we found that synthetic N addition in any tested amount stimulated the production of N2 O from ammonia-oxidizing bacteria (AOB), but not archaea (AOA), from a bioenergy crop soil. The activities of these two populations were differentiated by N treatments, with abundance and activity of AOB increasing as nitrate and N2 O production increased. Moreover, as N2 O production increased, the isotopic composition of N2 O was consistent with an AOB source. Relative N2 O contributions by both populations were quantified using selective inhibitors and varying N availability. Complementary field analyses confirmed a positive correlation between N2 O flux and AOB abundance with N application. Collectively, our data indicate that AOB are the major N2 O producers, even with low N addition, and that better-metered N application, complemented by selective inhibitors, could reduce projected N2 O emissions from agricultural soils.


Assuntos
Amônia/metabolismo , Archaea/metabolismo , Bactérias/metabolismo , Óxido Nitroso/metabolismo , Microbiologia do Solo , Agricultura , Amônia/química , Bactérias/classificação , Fertilizantes/análise , Nitrificação , Nitrogênio , Oxirredução , Solo/química
12.
Mol Syst Biol ; 13(3): 919, 2017 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-28320772

RESUMO

Managing trade-offs through gene regulation is believed to confer resilience to a microbial community in a fluctuating resource environment. To investigate this hypothesis, we imposed a fluctuating environment that required the sulfate-reducer Desulfovibrio vulgaris to undergo repeated ecologically relevant shifts between retaining metabolic independence (active capacity for sulfate respiration) and becoming metabolically specialized to a mutualistic association with the hydrogen-consuming Methanococcus maripaludis Strikingly, the microbial community became progressively less proficient at restoring the environmentally relevant physiological state after each perturbation and most cultures collapsed within 3-7 shifts. Counterintuitively, the collapse phenomenon was prevented by a single regulatory mutation. We have characterized the mechanism for collapse by conducting RNA-seq analysis, proteomics, microcalorimetry, and single-cell transcriptome analysis. We demonstrate that the collapse was caused by conditional gene regulation, which drove precipitous decline in intracellular abundance of essential transcripts and proteins, imposing greater energetic burden of regulation to restore function in a fluctuating environment.


Assuntos
Desulfovibrio vulgaris/crescimento & desenvolvimento , Mathanococcus/crescimento & desenvolvimento , Biologia de Sistemas/métodos , Desulfovibrio vulgaris/genética , Evolução Molecular Direcionada , Perfilação da Expressão Gênica , Mathanococcus/genética , Oxirredução , Fenótipo , Proteômica , Análise de Sequência de RNA , Análise de Célula Única , Sulfatos/metabolismo
13.
Proc Natl Acad Sci U S A ; 112(35): 10979-84, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26283385

RESUMO

Marine ammonia-oxidizing archaea (AOA) are among the most abundant of marine microorganisms, spanning nearly the entire water column of diverse oceanic provinces. Historical patterns of abundance are preserved in sediments in the form of their distinctive glycerol dibiphytanyl glycerol tetraether (GDGT) membrane lipids. The correlation between the composition of GDGTs in surface sediment and the overlying annual average sea surface temperature forms the basis for a paleotemperature proxy (TEX86) that is used to reconstruct surface ocean temperature as far back as the Middle Jurassic. However, mounting evidence suggests that factors other than temperature could also play an important role in determining GDGT distributions. We here use a study set of four marine AOA isolates to demonstrate that these closely related strains generate different TEX86-temperature relationships and that oxygen (O2) concentration is at least as important as temperature in controlling TEX86 values in culture. All of the four strains characterized showed a unique membrane compositional response to temperature, with TEX86-inferred temperatures varying as much as 12 °C from the incubation temperatures. In addition, both linear and nonlinear TEX86-temperature relationships were characteristic of individual strains. Increasing relative abundance of GDGT-2 and GDGT-3 with increasing O2 limitation, at the expense of GDGT-1, led to significant elevations in TEX86-derived temperature. Although the adaptive significance of GDGT compositional changes in response to both temperature and O2 is unclear, this observation necessitates a reassessment of archaeal lipid-based paleotemperature proxies, particularly in records that span low-oxygen events or underlie oxygen minimum zones.


Assuntos
Archaea/metabolismo , Biologia Marinha , Oxigênio/metabolismo , Temperatura , Amônia/metabolismo , Archaea/crescimento & desenvolvimento , Fatores de Confusão Epidemiológicos
14.
J Bacteriol ; 199(23)2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28874410

RESUMO

Due in large part to their ability to facilitate the diffusion of a diverse range of solutes across the outer membrane (OM) of Gram-negative bacteria, the porins represent one of the most prominent and important bacterial membrane protein superfamilies. Notably, for the Gram-negative bacterium Desulfovibrio vulgaris Hildenborough, a model organism for studies of sulfate-reducing bacteria, no genes for porins have been identified or proposed in its annotated genome. Results from initial biochemical studies suggested that the product of the DVU0799 gene, which is one of the most abundant proteins of the D. vulgaris Hildenborough OM and purified as a homotrimeric complex, was a strong porin candidate. To investigate this possibility, this protein was further characterized biochemically and biophysically. Structural analyses via electron microscopy of negatively stained protein identified trimeric particles with stain-filled depressions and structural modeling suggested a ß-barrel structure for the monomer, motifs common among the known porins. Functional studies were performed in which crude OM preparations or purified DVU0799 was reconstituted into proteoliposomes and the proteoliposomes were examined for permeability against a series of test solutes. The results obtained establish DVU0799 to be a pore-forming protein with permeability properties similar to those observed for classical bacterial porins, such as those of Escherichia coli Taken together, these findings identify this highly abundant OM protein to be the major porin of D. vulgaris Hildenborough. Classification of DVU0799 in this model organism expands the database of functionally characterized porins and may also extend the range over which sequence analysis strategies can be used to identify porins in other bacterial genomes.IMPORTANCE Porins are membrane proteins that form transmembrane pores for the passive transport of small molecules across the outer membranes of Gram-negative bacteria. The present study identified and characterized the major porin of the model sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough, observing its preference for anionic sugars over neutral ones. Its predicted architecture appears to be novel for a classical porin, as its core ß-barrel structure is of a type typically found in solute-specific channels. Broader use of the methods employed here, such as assays for channel permeability and electron microscopy of purified samples, is expected to help expand the database of confirmed porin sequences and improve the range over which sequence analysis-based strategies can be used to identify porins in other Gram-negative bacteria. Functional characterization of these critical gatekeeping proteins from divergent Desulfovibrio species should offer an improved understanding of the physiological features that determine their habitat range and supporting activities.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/metabolismo , Desulfovibrio vulgaris/metabolismo , Porinas/metabolismo , Transporte Biológico/fisiologia , Escherichia coli/metabolismo , Proteolipídeos/metabolismo
15.
Environ Microbiol ; 19(8): 3059-3069, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28419704

RESUMO

Microbial populations can withstand, overcome and persist in the face of environmental fluctuation. Previously, we demonstrated how conditional gene regulation in a fluctuating environment drives dilution of condition-specific transcripts, causing a population of Desulfovibrio vulgaris Hildenborough (DvH) to collapse after repeatedly transitioning from sulfate respiration to syntrophic conditions with the methanogen Methanococcus maripaludis. Failure of the DvH to successfully transition contributed to the collapse of this model community. We investigated the mechanistic basis for loss of robustness by examining whether conditional gene regulation altered heterogeneity in gene expression across individual DvH cells. We discovered that robustness of a microbial population across environmental transitions was attributable to the retention of cells in two states that exhibited different condition-specific gene expression patterns. In our experiments, a population with disrupted conditional regulation successfully alternated between cell states. Meanwhile, a population with intact conditional regulation successfully switched between cell states initially, but collapsed after repeated transitions, possibly due to the high energy requirements of regulation. These results demonstrate that the survival of this entire model microbial community is dependent on the regulatory system's influence on the distribution of distinct cell states among individual cells within a clonal population.


Assuntos
Desulfovibrio vulgaris/crescimento & desenvolvimento , Mathanococcus/crescimento & desenvolvimento , Consórcios Microbianos/fisiologia , Interações Microbianas/fisiologia , Desulfovibrio vulgaris/genética , Metabolismo Energético/fisiologia , Oxirredução , Sulfatos/metabolismo
16.
Annu Rev Microbiol ; 66: 83-101, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22994489

RESUMO

The discovery of ammonia-oxidizing archaea (AOA), now generally recognized to exert primary control over ammonia oxidation in terrestrial, marine, and geothermal habitats, necessitates a reassessment of the nitrogen cycle. In particular, the unusually high affinity of marine and terrestrial AOA for ammonia indicates that this group may determine the oxidation state of nitrogen available to associated micro- and macrobiota, altering our current understanding of trophic interactions. Initial comparative genomics and physiological studies have revealed a novel, and as yet unresolved, primarily copper-based pathway for ammonia oxidation and respiration distinct from that of known ammonia-oxidizing bacteria and possibly relevant to the production of atmospherically active nitrogen oxides. Comparative studies also provide compelling evidence that the lineage of Archaea with which the AOA affiliate is sufficiently divergent to justify the creation of a novel phylum, the Thaumarchaeota.


Assuntos
Amônia/metabolismo , Archaea/genética , Archaea/fisiologia , Variação Genética , Redes e Vias Metabólicas , Nitrogênio/metabolismo , Oxirredução
17.
Int J Syst Evol Microbiol ; 67(12): 5067-5079, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29034851

RESUMO

Four mesophilic, neutrophilic, and aerobic marine ammonia-oxidizing archaea, designated strains SCM1T, HCA1T, HCE1T and PS0T, were isolated from a tropical marine fish tank, dimly lit deep coastal waters, the lower euphotic zone of coastal waters, and near-surface sediment in the Puget Sound estuary, respectively. Cells are straight or slightly curved small rods, 0.15-0.26 µm in diameter and 0.50-1.59 µm in length. Motility was not observed, although strain PS0T possesses genes associated with archaeal flagella and chemotaxis, suggesting it may be motile under some conditions. Cell membranes consist of glycerol dibiphytanyl glycerol tetraether (GDGT) lipids, with crenarchaeol as the major component. Strain SCM1T displays a single surface layer (S-layer) with p6 symmetry, distinct from the p3-S-layer reported for the soil ammonia-oxidizing archaeon Nitrososphaera viennensis EN76T. Respiratory quinones consist of fully saturated and monounsaturated menaquinones with 6 isoprenoid units in the side chain. Cells obtain energy from ammonia oxidation and use carbon dioxide as carbon source; addition of an α-keto acid (α-ketoglutaric acid) was necessary to sustain growth of strains HCA1T, HCE1T, and PS0T. Strain PS0T uses urea as a source of ammonia for energy production and growth. All strains synthesize vitamin B1 (thiamine), B2 (riboflavin), B6 (pyridoxine), and B12 (cobalamin). Optimal growth occurs between 25 and 32 °C, between pH 6.8 and 7.3, and between 25 and 37 ‰ salinity. All strains have a low mol% G+C content of 33.0-34.2. Strains are related by 98 % or greater 16S rRNA gene sequence identity, sharing ~85 % 16S rRNA gene sequence identity with Nitrososphaera viennensis EN76T. All four isolates are well separated by phenotypic and genotypic characteristics and are here assigned to distinct species within the genus Nitrosopumilus gen. nov. Isolates SCM1T (=ATCC TSD-97T =NCIMB 15022T), HCA1T (=ATCC TSD-96T), HCE1T (=ATCC TSD-98T), and PS0T (=ATCC TSD-99T) are type strains of the species Nitrosopumilusmaritimus sp. nov., Nitrosopumilus cobalaminigenes sp. nov., Nitrosopumilus oxyclinae sp. nov., and Nitrosopumilus ureiphilus sp. nov., respectively. In addition, we propose the family Nitrosopumilaceae fam. nov. and the order Nitrosopumilales ord. nov. within the class Nitrososphaeria.


Assuntos
Archaea/classificação , Sedimentos Geológicos/microbiologia , Filogenia , Água do Mar/microbiologia , Amônia/metabolismo , Archaea/genética , Archaea/isolamento & purificação , Composição de Bases , DNA Arqueal/genética , Estuários , Éteres de Glicerila/química , Oxirredução , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Washington
18.
Environ Sci Technol ; 51(7): 3609-3620, 2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28300407

RESUMO

To further understand the diversity and dynamics of SRB in response to substrate amendment, we sequenced genes coding for the dissimilatory sulfite reductase (dsrA) in groundwater samples collected after an emulsified vegetable oil (EVO) amendment, which sustained U(VI)-reducing conditions for one year in a fast-flowing aquifer. EVO amendment significantly altered the composition of groundwater SRB communities. Sequences having no closely related-described species dominated (80%) the indigenous SRB communities in nonamended wells. After EVO amendment, Desulfococcus, Desulfobacterium, and Desulfovibrio, known for long-chain-fatty-acid, short-chain-fatty-acid and H2 oxidation and U(VI) reduction, became dominant accounting for 7 ± 2%, 21 ± 8%, and 55 ± 8% of the SRB communities, respectively. Succession of these SRB at different bioactivity stages based on redox substrates/products (acetate, SO4-2, U(VI), NO3-, Fe(II), and Mn(II)) was observed. Desulfovibrio and Desulfococcus dominated SRB communities at 4-31 days, whereas Desulfobacterium became dominant at 80-140 days. By the end of the experiment (day 269), the abundance of these SRB decreased but the overall diversity of groundwater SRB was still higher than non-EVO controls. Up to 62% of the SRB community changes could be explained by groundwater geochemical variables, including those redox substrates/products. A significant (P < 0.001) correlation was observed between groundwater U(VI) concentrations and Desulfovibrio abundance. Our results showed that the members of SRB and their dynamics were correlated significantly with slow EVO biodegradation, electron donor production and maintenance of U(VI)-reducing conditions in the aquifer.


Assuntos
Água Subterrânea/química , Urânio/metabolismo , Bactérias/metabolismo , Biodegradação Ambiental , Oxirredução , Sulfatos/química , Óxidos de Enxofre
19.
Proc Natl Acad Sci U S A ; 111(34): 12504-9, 2014 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-25114236

RESUMO

Ammonia-oxidizing archaea (AOA) are now implicated in exerting significant control over the form and availability of reactive nitrogen species in marine environments. Detailed studies of specific metabolic traits and physicochemical factors controlling their activities and distribution have not been well constrained in part due to the scarcity of isolated AOA strains. Here, we report the isolation of two new coastal marine AOA, strains PS0 and HCA1. Comparison of the new strains to Nitrosopumilus maritimus strain SCM1, the only marine AOA in pure culture thus far, demonstrated distinct adaptations to pH, salinity, organic carbon, temperature, and light. Strain PS0 sustained nearly 80% of ammonia oxidation activity at a pH as low as 5.9, indicating that coastal strains may be less sensitive to the ongoing reduction in ocean pH. Notably, the two novel isolates are obligate mixotrophs that rely on uptake and assimilation of organic carbon compounds, suggesting a direct coupling between chemolithotrophy and organic matter assimilation in marine food webs. All three isolates showed only minor photoinhibition at 15 µE ⋅ m(-2) ⋅ s(-1) and rapid recovery of ammonia oxidation in the dark, consistent with an AOA contribution to the primary nitrite maximum and the plausibility of a diurnal cycle of archaeal ammonia oxidation activity in the euphotic zone. Together, these findings highlight an unexpected adaptive capacity within closely related marine group I Archaea and provide new understanding of the physiological basis of the remarkable ecological success reflected by their generally high abundance in marine environments.


Assuntos
Amônia/metabolismo , Archaea/metabolismo , Archaea/classificação , Archaea/genética , Ecossistema , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Oxirredução , Filogenia , RNA Arqueal/genética , RNA Ribossômico 16S/genética , Salinidade , Água do Mar/microbiologia , Temperatura
20.
Proc Natl Acad Sci U S A ; 111(22): 8239-44, 2014 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-24843170

RESUMO

Archaea of the phylum Thaumarchaeota are among the most abundant prokaryotes on Earth and are widely distributed in marine, terrestrial, and geothermal environments. All studied Thaumarchaeota couple the oxidation of ammonia at extremely low concentrations with carbon fixation. As the predominant nitrifiers in the ocean and in various soils, ammonia-oxidizing archaea contribute significantly to the global nitrogen and carbon cycles. Here we provide biochemical evidence that thaumarchaeal ammonia oxidizers assimilate inorganic carbon via a modified version of the autotrophic hydroxypropionate/hydroxybutyrate cycle of Crenarchaeota that is far more energy efficient than any other aerobic autotrophic pathway. The identified genes of this cycle were found in the genomes of all sequenced representatives of the phylum Thaumarchaeota, indicating the environmental significance of this efficient CO2-fixation pathway. Comparative phylogenetic analysis of proteins of this pathway suggests that the hydroxypropionate/hydroxybutyrate cycle emerged independently in Crenarchaeota and Thaumarchaeota, thus supporting the hypothesis of an early evolutionary separation of both archaeal phyla. We conclude that high efficiency of anabolism exemplified by this autotrophic cycle perfectly suits the lifestyle of ammonia-oxidizing archaea, which thrive at a constantly low energy supply, thus offering a biochemical explanation for their ecological success in nutrient-limited environments.


Assuntos
Aerobiose/fisiologia , Amônia/metabolismo , Archaea/enzimologia , Processos Autotróficos/fisiologia , Ciclo do Carbono/fisiologia , Dióxido de Carbono/metabolismo , Acetilcoenzima A/metabolismo , Archaea/genética , Archaea/metabolismo , Metabolismo Energético/genética , Metabolismo Energético/fisiologia , Evolução Molecular , Hidroliases/genética , Hidroliases/metabolismo , Oxirredução , Fotossíntese/genética , Fotossíntese/fisiologia , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA