Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nephrol Dial Transplant ; 38(5): 1080-1088, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35481547

RESUMO

The world faces a dramatic man-made ecologic disaster and healthcare is a crucial part of this problem. Compared with other therapeutic areas, nephrology care, and especially dialysis, creates an excessive burden via water consumption, greenhouse gas emission and waste production. In this advocacy article from the European Kidney Health Alliance we describe the mutual impact of climate change on kidney health and kidney care on ecology. We propose an array of measures as potential solutions related to the prevention of kidney disease, kidney transplantation and green dialysis. For dialysis, several proactive suggestions are made, especially by lowering water consumption, implementing energy-neutral policies, waste triage and recycling of materials. These include original proposals such as dialysate regeneration, dialysate flow reduction, water distillation systems for dialysate production, heat pumps for unit climatization, heat exchangers for dialysate warming, biodegradable and bio-based polymers, alternative power sources, repurposing of plastic waste (e.g. incorporation in concrete), registration systems of ecologic burden and platforms to exchange ecologic best practices. We also discuss how the European Green Deal offers real potential for supporting and galvanizing these urgent environmental changes. Finally, we formulate recommendations to professionals, manufacturers, providers and policymakers on how this correction can be achieved.


Assuntos
Nefrologia , Humanos , Diálise Renal , Fundos de Seguro , Rim , Soluções para Diálise
2.
Int J Mol Sci ; 24(15)2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37569805

RESUMO

Patients with end-stage kidney disease (ESKD) suffer from high levels of protein-bound uremic toxins (PBUTs) that contribute to various comorbidities. Conventional dialysis methods are ineffective in removing these PBUTs. A potential solution could be offered by a bioartificial kidney (BAK) composed of porous membranes covered by proximal tubule epithelial cells (PTECs) that actively secrete PBUTs. However, BAK development is currently being hampered by a lack of knowledge regarding the cytocompatibility of the dialysis fluid (DF) that comes in contact with the PTECs. Here, we conducted a comprehensive functional assessment of the DF on human conditionally immortalized PTECs (ciPTECs) cultured as monolayers in well plates, on Transwell® inserts, or on hollow fiber membranes (HFMs) that form functional units of a BAK. We evaluated cell viability markers, monolayer integrity, and PBUT clearance. Our results show that exposure to DF did not affect ciPTECs' viability, membrane integrity, or function. Seven anionic PBUTs were efficiently cleared from the perfusion fluid containing a PBUTs cocktail or uremic plasma, an effect which was enhanced in the presence of albumin. Overall, our findings support that the DF is cytocompatible and does not compromise ciPTECs function, paving the way for further advancements in BAK development and its potential clinical application.


Assuntos
Falência Renal Crônica , Toxinas Biológicas , Humanos , Diálise Renal/métodos , Toxinas Urêmicas , Falência Renal Crônica/terapia , Falência Renal Crônica/metabolismo , Rim/metabolismo , Túbulos Renais Proximais/metabolismo , Soluções para Diálise/metabolismo , Toxinas Biológicas/metabolismo
3.
Artif Organs ; 45(2): 175-182, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32780472

RESUMO

As increasing demand for hemodialysis (HD) treatment incurs significant financial burden to healthcare systems and ecological burden as well, novel therapeutic approaches as well as innovations and technological advances are being sought that could lead to the development of purification devices such as dialyzers with improved characteristics and wearable technology. Novel knowledge such as the development of more accurate kinetic models, the development of novel HD membranes with the use of nanotechnology, novel manufacturing processes, and the latest technology in the science of materials have enabled novel solutions already marketed or on the verge of becoming commercially available. This collaborative article reviews the latest advances in HD as they were presented by the authors in a recent symposium titled "Frontiers in Haemodialysis," held on 12th December 2019 at the Royal Society of Medicine in London.


Assuntos
Falência Renal Crônica/terapia , Membranas Artificiais , Nanotecnologia/tendências , Diálise Renal/instrumentação , Dispositivos Eletrônicos Vestíveis/tendências , Congressos como Assunto , Humanos , Invenções , Diálise Renal/métodos , Diálise Renal/tendências
4.
Macromol Rapid Commun ; 40(9): e1800867, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30817042

RESUMO

For the study of polymer networks, having access to polymer networks with a controlled and well-defined microscopic network structure is of great importance. However, typically, such networks are difficult to synthesize. In this work, a simple, effective, and widely applicable method is presented for synthesizing polymer networks with a well-defined network structure. This is done by the functionalization of polymeric diols using a diisocyanate, and their subsequent trimerization. Using hexamethylene diisocyanate and hydroxyl-group-terminated poly(ε-caprolactone) and poly(ethylene glycol), it is shown that both hydrophobic and hydrophilic poly(urethane-isocyanurate) networks with a well-defined network structure can readily be synthesized. By using in situ infrared spectroscopy, it is shown that the trimerization of isocyanate endgroups is clearly the predominant reaction pathway of network formation, supporting the proposed mechanism and network structure. The resulting networks possess excellent mechanical properties in both the dry and in the wet state.


Assuntos
Materiais Biocompatíveis/química , Isocianatos/química , Polímeros/química , Teste de Materiais , Polietilenoglicóis/química , Poliuretanos/química
5.
Chemphyschem ; 19(16): 2085-2092, 2018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-29436757

RESUMO

Photo-crosslinkable poly(trimethylene carbonate) (PTMC) macromers were used to fabricate microstructured surfaces. Microstructured PTMC surfaces were obtained by hot embossing the macromer against structured silicon masters and subsequent photo-crosslinking, resulting in network formation. The microstructures of the master could be precisely replicated, limiting the shrinkage. Microstructured PTMC was investigated for use in two different applications: as stamping material to transfer a model protein to another surface and as structured substrate for cell culture. Using the flexible and elastic materials as stamps, bovine serum albumin labelled with fluorescein isothiocyanate was patterned on glass surfaces. In cell culture experiments, the behavior of human mesenchymal stem cells on nonstructured and microstructured PTMC surfaces was investigated. The cells strongly adhered to the PTMC surfaces and proliferated well. Compared to poly(dimethylsiloxane) (PDMS), which is commonly used in soft lithography, the PTMC networks offer significant advantages. They show better compatibility with cells, are biodegradable, and have much better mechanical properties. Both materials are transparent, flexible, and elastic at room temperature, but the tear resistance of PTMC networks is much higher than that of PDMS. Thus, PTMC might be an alternative material to PDMS in the fields of biology, medicine, and tissue engineering, in which microfabricated devices are increasingly being applied.


Assuntos
Reagentes de Ligações Cruzadas/química , Dimetilpolisiloxanos/metabolismo , Dioxanos/química , Polímeros/química , Animais , Bovinos , Células Cultivadas , Dimetilpolisiloxanos/química , Humanos , Células-Tronco Mesenquimais/química , Estrutura Molecular , Tamanho da Partícula , Processos Fotoquímicos , Soroalbumina Bovina/química , Propriedades de Superfície , Engenharia Tecidual
6.
J Mater Sci Mater Med ; 29(7): 91, 2018 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-29938334

RESUMO

The development of immune protective islet encapsulation devices could allow for islet transplantation in the absence of immunosuppression. However, the immune protective membrane / barrier introduced there could also impose limitations in transport of oxygen and nutrients to the encapsulated cells resulting to limited islet viability. In the last years, it is well understood that achieving prevascularization of the device in vitro could facilitate its connection to the host vasculature after implantation, and therefore could provide sufficient blood supply and oxygenation to the encapsulated islets. However, the microvascular networks created in vitro need to mimic well the highly organized vasculature of the native tissue. In earlier study, we developed a functional macroencapsulation device consisting of two polyethersulfone/polyvinylpyrrolidone (PES/PVP) membranes, where a bottom microwell membrane provides good separation of encapsulated islets and the top flat membrane acts as a lid. In this work, we investigate the possibility of creating early microvascular networks on the lid of this device by combining novel membrane microfabrication with co-culture of human umbilical vein endothelial cell (HUVEC) and fibroblasts. We create thin porous microstructured PES/PVP membranes with solid and intermittent line-patterns and investigate the effect of cell alignment and cell interconnectivity as a first step towards the development of a stable prevascularized layer in vitro. Our results show that, in contrast to non-patterned membranes where HUVECs form unorganized HUVEC branch-like structures, for the micropatterned membranes, we can achieve cell alignment and the co-culture of HUVECs on a monolayer of fibroblasts attached on the membranes with intermittent line-pattern allows for the creation of HUVEC branch-like structures over the membrane surface. This important step towards creating early microvascular networks was achieved without the addition of hydrogels, often used in angiogenesis assays, as gels could block the pores of the membrane and limit the transport properties of the islet encapsulation device.


Assuntos
Transplante das Ilhotas Pancreáticas/instrumentação , Materiais Biocompatíveis/química , Adesão Celular , Células Cultivadas , Microambiente Celular , Técnicas de Cocultura , Células Endoteliais/citologia , Fibroblastos/citologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Teste de Materiais , Membranas Artificiais , Microscopia Eletrônica de Varredura , Neovascularização Fisiológica , Polímeros , Polivinil , Pirrolidinas , Sulfonas
7.
J Mater Sci Mater Med ; 29(11): 174, 2018 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-30413974

RESUMO

Extrahepatic transplantation of islets of Langerhans could aid in better survival of islets after transplantation. When islets are transfused into the liver 60-70% of them are lost immediately after transplantation. An important factor for a successful extrahepatic transplantation is a well-vascularized tissue surrounding the implant. There are many strategies known for enhancing vessel formation such as adding cells with endothelial potential, the combination with angiogenic factors and / or applying surface topography at the exposed surface of the device. Previously we developed porous, micropatterned membranes which can be applied as a lid for an islet encapsulation device and we showed that the surface topography induces human umbilical vein endothelial cell (HUVEC) alignment and interconnection. This was achieved without the addition of hydrogels, often used in angiogenesis assays. In this work, we went one step further towards clinical implementation of the device by combining this micropatterned lid with Mesenchymal Stem Cells (MSCs) to facilitate prevascularization in vivo. As for HUVECs, the micropatterned membranes induced MSC alignment and organization in vitro, an important contributor to vessel formation, whereas in vivo (subcutaneous rat model) they contributed to improved implant prevascularization. In fact, the combination of MSCs seeded on the micropatterned membrane induced the highest vessel formation score in 80% of the sections.


Assuntos
Composição de Medicamentos , Ilhotas Pancreáticas/crescimento & desenvolvimento , Membranas Artificiais , Células-Tronco Mesenquimais , Alicerces Teciduais , Células Endoteliais da Veia Umbilical Humana , Humanos , Ilhotas Pancreáticas/irrigação sanguínea , Neovascularização Fisiológica
8.
Respir Res ; 17: 44, 2016 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-27107715

RESUMO

Inspired by the increasing burden of lung associated diseases in society and an growing demand to accommodate patients, great efforts by the scientific community produce an increasing stream of data that are focused on delineating the basic principles of lung development and growth, as well as understanding the biomechanical properties to build artificial lung devices. In addition, the continuing efforts to better define the disease origin, progression and pathology by basic scientists and clinicians contributes to insights in the basic principles of lung biology. However, the use of different model systems, experimental approaches and readout systems may generate somewhat conflicting or contradictory results. In an effort to summarize the latest developments in the lung epithelial stem cell biology, we provide an overview of the current status of the field. We first describe the different stem cells, or progenitor cells, residing in the homeostatic lung. Next, we focus on the plasticity of the different cell types upon several injury-induced activation or repair models, and highlight the regenerative capacity of lung cells. Lastly, we summarize the generation of lung mimics, such as air-liquid interface cultures, organoids and lung on a chip, that are required to test emerging hypotheses. Moreover, the increasing collaboration between distinct specializations will contribute to the eventual development of an artificial lung device capable of assisting reduced lung function and capacity in human patients.


Assuntos
Órgãos Bioartificiais , Transplante de Pulmão/instrumentação , Pulmão/citologia , Pulmão/crescimento & desenvolvimento , Regeneração/fisiologia , Células-Tronco/citologia , Animais , Biomimética/instrumentação , Humanos , Respiração Artificial/instrumentação , Transplante de Células-Tronco/métodos , Engenharia Tecidual/instrumentação , Engenharia Tecidual/métodos
9.
Proc Natl Acad Sci U S A ; 108(40): 16565-70, 2011 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-21949368

RESUMO

It is increasingly recognized that material surface topography is able to evoke specific cellular responses, endowing materials with instructive properties that were formerly reserved for growth factors. This opens the window to improve upon, in a cost-effective manner, biological performance of any surface used in the human body. Unfortunately, the interplay between surface topographies and cell behavior is complex and still incompletely understood. Rational approaches to search for bioactive surfaces will therefore omit previously unperceived interactions. Hence, in the present study, we use mathematical algorithms to design nonbiased, random surface features and produce chips of poly(lactic acid) with 2,176 different topographies. With human mesenchymal stromal cells (hMSCs) grown on the chips and using high-content imaging, we reveal unique, formerly unknown, surface topographies that are able to induce MSC proliferation or osteogenic differentiation. Moreover, we correlate parameters of the mathematical algorithms to cellular responses, which yield novel design criteria for these particular parameters. In conclusion, we demonstrate that randomized libraries of surface topographies can be broadly applied to unravel the interplay between cells and surface topography and to find improved material surfaces.


Assuntos
Algoritmos , Materiais Biocompatíveis , Ácido Láctico/química , Células-Tronco Mesenquimais/fisiologia , Polímeros/química , Propriedades de Superfície , Proliferação de Células , Bases de Dados Factuais , Ensaios de Triagem em Larga Escala/métodos , Humanos , Células-Tronco Mesenquimais/citologia , Microscopia Confocal , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência , Poliésteres
10.
Nat Rev Nephrol ; 19(8): 481-490, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37277461

RESUMO

Haemodialysis is life sustaining but expensive, provides limited removal of uraemic solutes, is associated with poor patient quality of life and has a large carbon footprint. Innovative dialysis technologies such as portable, wearable and implantable artificial kidney systems are being developed with the aim of addressing these issues and improving patient care. An important challenge for these technologies is the need for continuous regeneration of a small volume of dialysate. Dialysate recycling systems based on sorbents have great potential for such regeneration. Novel dialysis membranes composed of polymeric or inorganic materials are being developed to improve the removal of a broad range of uraemic toxins, with low levels of membrane fouling compared with currently available synthetic membranes. To achieve more complete therapy and provide important biological functions, these novel membranes could be combined with bioartificial kidneys, which consist of artificial membranes combined with kidney cells. Implementation of these systems will require robust cell sourcing; cell culture facilities annexed to dialysis centres; large-scale, low-cost production; and quality control measures. These challenges are not trivial, and global initiatives involving all relevant stakeholders, including academics, industrialists, medical professionals and patients with kidney disease, are required to achieve important technological breakthroughs.


Assuntos
Rins Artificiais , Dispositivos Eletrônicos Vestíveis , Humanos , Qualidade de Vida , Diálise Renal , Soluções para Diálise
11.
Electrophoresis ; 33(18): 2892-5, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22911277

RESUMO

This work presents the application of membrane technology for the fabrication of stationary phase for CEC columns using the technique based on phase inversion of polymer solution. A blend of polyimide P84 and sulphonated poly(ether ether ketone was processed via immersion precipitation dry-wet spinning into small-bore porous fiber. The morphology, zeta potential, and performance of the porous structure in the CEC separation were investigated. Noncharged molecules (as markers of the electroosmotic flow) and small organic compounds were injected into the column, driven under the application of voltage, and detected on the electropherogram. The proof of concept of applying porous membrane structure as stationary phase for CEC was shown and possible optimization to improve efficiency and selectivity was suggested.


Assuntos
Eletrocromatografia Capilar/instrumentação , Eletrocromatografia Capilar/métodos , Membranas Artificiais , Compostos Orgânicos/química , Compostos Orgânicos/isolamento & purificação , Polímeros/química , Porosidade
12.
Biomed Microdevices ; 14(1): 95-107, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22048776

RESUMO

This paper presents cell culture substrates in the form of microcontainer arrays with overlaid surface topographies, and a technology for their fabrication. The new fabrication technology is based on microscale thermoforming of thin polymer films whose surfaces are topographically prepatterned on a micro- or nanoscale. For microthermoforming, we apply a new process on the basis of temporary back moulding of polymer films and use the novel concept of a perforated-sheet-like mould. Thermal micro- or nanoimprinting is applied for prepatterning. The novel cell container arrays are fabricated from polylactic acid (PLA) films. The thin-walled microcontainer structures have the shape of a spherical calotte merging into a hexagonal shape at their upper circumferential edges. In the arrays, the cell containers are arranged densely packed in honeycomb fashion. The inner surfaces of the highly curved container walls are provided with various topographical micro- and nanopatterns. For a first validation of the microcontainer arrays as in vitro cell culture substrates, C2C12 mouse premyoblasts are cultured in containers with microgrooved surfaces and shown to align along the grooves in the three-dimensional film substrates. In future stem-cell-biological and tissue engineering applications, microcontainers fabricated using the proposed technology may act as geometrically defined artificial microenvironments or niches.


Assuntos
Polímeros/química , Engenharia Tecidual/métodos , Animais , Linhagem Celular , Ensaios de Triagem em Larga Escala , Ácido Láctico/química , Camundongos , Poliésteres , Propriedades de Superfície
13.
Membranes (Basel) ; 12(5)2022 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-35629779

RESUMO

Common methods for fabricating membrane-based scaffolds for tissue engineering with (hydrophobic) polymers include thermal or liquid-phase inversion, sintering, particle leaching, electrospinning and stereolithography. However, these methods have limitations, such as low resolution and pore interconnectivity and may often require the application of high temperatures and/or toxic porogens, additives or solvents. In this work, we aim to overcome some of these limitations and propose a one-step method to produce large porous membrane-based scaffolds formed by air-water interfacial phase separation using water as a pore-forming agent and casting substrate. Here, we provide proof of concept using poly (trimethylene carbonate), a flexible and biocompatible hydrophobic polymer. Membrane-based scaffolds were prepared by dropwise addition of the polymer solution to water. Upon contact, rapid solvent-non-solvent phase separation took place on the air-water interface, after which the scaffold was cured by UV irradiation. We can tune and control the morphology of these scaffolds, including pore size and porosity, by changing various parameters, including polymer concentration, solvent type and temperature. Importantly, human hepatic stellate cells cultured on these membrane-based scaffolds remained viable and showed no signs of pro-inflammatory stress. These results indicate that the proposed air-water interfacial phase separation represents a versatile method for creating porous membrane-based scaffolds for tissue engineering applications.

14.
ACS Biomater Sci Eng ; 8(6): 2684-2699, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35502997

RESUMO

A comparatively straightforward approach to accomplish more physiological realism in organ-on-a-chip (OoC) models is through substrate geometry. There is increasing evidence that the strongly, microscale curved surfaces that epithelial or endothelial cells experience when lining small body lumens, such as the alveoli or blood vessels, impact their behavior. However, the most commonly used cell culture substrates for modeling of these human tissue barriers in OoCs, ion track-etched porous membranes, provide only flat surfaces. Here, we propose a more realistic culture environment for alveolar cells based on biomimetically microcurved track-etched membranes. They recreate the mainly spherical geometry of the cells' native microenvironment. In this feasibility study, the membranes were given the shape of hexagonally arrayed hemispherical microwells by an innovative combination of three-dimensional (3D) microfilm (thermo)forming and ion track technology. Integrated in microfluidic chips, they separated a top from a bottom cell culture chamber. The microcurved membranes were seeded by infusion with primary human alveolar epithelial cells. Despite the pronounced topology, the cells fully lined the alveoli-like microwell structures on the membranes' top side. The confluent curved epithelial cell monolayers could be cultured successfully at the air-liquid interface for 14 days. Similarly, the top and bottom sides of the microcurved membranes were seeded with cells from the Calu-3 lung epithelial cell line and human lung microvascular endothelial cells, respectively. Thereby, the latter lined the interalveolar septum-like interspace between the microwells in a network-type fashion, as in the natural counterpart. The coculture was maintained for 11 days. The presented 3D lung-on-a-chip model might set the stage for other (micro)anatomically inspired membrane-based OoCs in the future.


Assuntos
Células Endoteliais , Pulmão , Técnicas de Cultura de Células/métodos , Células Epiteliais , Humanos , Pulmão/fisiologia , Microfluídica/métodos
15.
Biomed Mater ; 16(3)2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33831849

RESUMO

Islet encapsulation in membrane-based devices could allow for transplantation of donor islet tissue in the absence of immunosuppression. To achieve long-term survival of islets, the device should allow rapid exchange of essential nutrients and be vascularized to guarantee continued support of islet function. Recently, we have proposed a membrane-based macroencapsulation device consisting of a microwell membrane for islet separation covered by a micropatterned membrane lid. The device can prevent islet aggregation and support functional islet survivalin vitro. Here, based on previous modeling studies, we develop an improved device with smaller microwell dimensions, decreased spacing between the microwells and reduced membrane thickness and investigate its performancein vitroandin vivo. This improved device allows for encapsulating higher islet numbers without islet aggregation and by applying anin vivoimaging system we demonstrate very good perfusion of the device when implanted intraperitoneally in mice. Besides, when it is implanted subcutaneously in mice, islet viability is maintained and a vascular network in close proximity to the device is developed. All these important findings demonstrate the potential of this device for islet transplantation.


Assuntos
Materiais Biocompatíveis , Transplante das Ilhotas Pancreáticas/métodos , Ilhotas Pancreáticas/citologia , Engenharia Tecidual/métodos , Alicerces Teciduais , Animais , Técnicas de Cultura de Células , Sobrevivência Celular , Desenho de Equipamento , Insulina/metabolismo , Masculino , Membranas Artificiais , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Varredura , Ratos
16.
Membranes (Basel) ; 11(3)2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33799867

RESUMO

Due to the continuing high impact of lung diseases on society and the emergence of new respiratory viruses, such as SARS-CoV-2, there is a great need for in vitro lung models that more accurately recapitulate the in vivo situation than current models based on lung epithelial cell cultures on stiff membranes. Therefore, we developed an in vitro airway epithelial-endothelial cell culture model based on Calu-3 human lung epithelial cells and human lung microvascular endothelial cells (LMVECs), cultured on opposite sides of flexible porous poly(trimethylene carbonate) (PTMC) membranes. Calu-3 cells, cultured for two weeks at an air-liquid interface (ALI), showed good expression of the tight junction (TJ) protein Zonula Occludens 1 (ZO-1). LMVECs cultured submerged for three weeks were CD31-positive, but the expression was diffuse and not localized at the cell membrane. Barrier functions of the Calu-3 cell cultures and the co-cultures with LMVECs were good, as determined by electrical resistance measurements and fluorescein isothiocyanate-dextran (FITC-dextran) permeability assays. Importantly, the Calu-3/LMVEC co-cultures showed better cell viability and barrier function than mono-cultures. Moreover, there was no evidence for epithelial- and endothelial-to-mesenchymal transition (EMT and EndoMT, respectively) based on staining for the mesenchymal markers vimentin and α-SMA, respectively. These results indicate the potential of this new airway epithelial-endothelial model for lung research. In addition, since the PTMC membrane is flexible, the model can be expanded by introducing cyclic stretch for enabling mechanical stimulation of the cells. Furthermore, the model can form the basis for biomimetic airway epithelial-endothelial and alveolar-endothelial models with primary lung epithelial cells.

17.
Hypertension ; 77(4): 1029-1035, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33583200

RESUMO

The General Data Protection Regulation (GDPR) became binding law in the European Union Member States in 2018, as a step toward harmonizing personal data protection legislation in the European Union. The Regulation governs almost all types of personal data processing, hence, also, those pertaining to biomedical research. The purpose of this article is to highlight the main practical issues related to data and biological sample sharing that biomedical researchers face regularly, and to specify how these are addressed in the context of GDPR, after consulting with ethics/legal experts. We identify areas in which clarifications of the GDPR are needed, particularly those related to consent requirements by study participants. Amendments should target the following: (1) restricting exceptions based on national laws and increasing harmonization, (2) confirming the concept of broad consent, and (3) defining a roadmap for secondary use of data. These changes will be achieved by acknowledged learned societies in the field taking the lead in preparing a document giving guidance for the optimal interpretation of the GDPR, which will be finalized following a period of commenting by a broad multistakeholder audience. In parallel, promoting engagement and education of the public in the relevant issues (such as different consent types or residual risk for re-identification), on both local/national and international levels, is considered critical for advancement. We hope that this article will open this broad discussion involving all major stakeholders, toward optimizing the GDPR and allowing a harmonized transnational research approach.


Assuntos
Pesquisa Biomédica , Segurança Computacional , Registros de Saúde Pessoal/ética , Disseminação de Informação , Pesquisa Biomédica/ética , Pesquisa Biomédica/legislação & jurisprudência , Segurança Computacional/legislação & jurisprudência , Segurança Computacional/tendências , Europa (Continente) , Humanos , Disseminação de Informação/legislação & jurisprudência , Disseminação de Informação/métodos
18.
Membranes (Basel) ; 10(10)2020 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-33022962

RESUMO

Despite the increased expenditure of the pharmaceutical industry on research and development, the number of drugs for cardiovascular diseases that reaches the market is decreasing. A major issue is the limited ability of the current in vitro and experimental animal models to accurately mimic human heart disease, which hampers testing of the efficacy of potential cardiac drugs. Moreover, many non-heart-related drugs have severe adverse cardiac effects, which is a major cause of drugs' retraction after approval. A main hurdle of current in vitro models is their inability to mimic the stiffness of in vivo cardiac tissue. For instance, poly(styrene) petri dishes, which are often used in these models, have a Young's modulus in the order of GPa, while the stiffness of healthy human heart tissue is <50 kPa. In pathological conditions, such as scarring and fibrosis, the stiffness of heart tissue is in the >100 kPa range. In this study, we focus on developing new membranes, with a set of properties for mimicry of cardiac tissue stiffness in vitro, based on methacrylate-functionalized macromers and triblock-copolymers of poly(trimethylene carbonate) and poly(ethylene glycol). The new membranes have Young's moduli in the hydrated state ranging from 18 kPa (healthy tissue) to 2.5 MPa (pathological tissue), and are suitable for cell contraction studies using human pluripotent stem-cell-derived cardiomyocytes. The membranes with higher hydrophilicity have low drug adsorption and low Young's moduli and could be suitable for drug screening applications.

19.
Membranes (Basel) ; 10(11)2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33167539

RESUMO

Polymeric membranes are widely applied in biomedical applications, including in vitro organ models. In such models, they are mostly used as supports on which cells are cultured to create functional tissue units of the desired organ. To this end, the membrane properties, e.g., morphology and porosity, should match the tissue properties. Organ models of dynamic (barrier) tissues, e.g., lung, require flexible, elastic and porous membranes. Thus, membranes based on poly (dimethyl siloxane) (PDMS) are often applied, which are flexible and elastic. However, PDMS has low cell adhesive properties and displays small molecule ad- and absorption. Furthermore, the introduction of porosity in these membranes requires elaborate methods. In this work, we aim to develop porous membranes for organ models based on poly(trimethylene carbonate) (PTMC): a flexible polymer with good cell adhesive properties which has been used for tissue engineering scaffolds, but not in in vitro organ models. For developing these membranes, we applied evaporation-induced phase separation (EIPS), a new method in this field based on solvent evaporation initiating phase separation, followed by membrane photo-crosslinking. We optimised various processing variables for obtaining form-stable PTMC membranes with average pore sizes between 5 to 8 µm and water permeance in the microfiltration range (17,000-41,000 L/m2/h/bar). Importantly, the membranes are flexible and are suitable for implementation in in vitro organ models.

20.
Toxins (Basel) ; 12(6)2020 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-32545617

RESUMO

In chronic kidney disease (CKD), the secretion of uremic toxins is compromised leading to their accumulation in blood, which contributes to uremic complications, in particular cardiovascular disease. Organic anion transporters (OATs) are involved in the tubular secretion of protein-bound uremic toxins (PBUTs). However, OATs also handle a wide range of drugs, including those used for treatment of cardiovascular complications and their interaction with PBUTs is unknown. The aim of this study was to investigate the interaction between commonly prescribed drugs in CKD and endogenous PBUTs with respect to OAT1-mediated uptake. We exposed a unique conditionally immortalized proximal tubule cell line (ciPTEC) equipped with OAT1 to a panel of selected drugs, including angiotensin-converting enzyme inhibitors (ACEIs: captopril, enalaprilate, lisinopril), angiotensin receptor blockers (ARBs: losartan and valsartan), furosemide and statins (pravastatin and simvastatin), and evaluated the drug-interactions using an OAT1-mediated fluorescein assay. We show that selected ARBs and furosemide significantly reduced fluorescein uptake, with the highest potency for ARBs. This was exaggerated in presence of some PBUTs. Selected ACEIs and statins had either no or a slight effect at supratherapeutic concentrations on OAT1-mediated fluorescein uptake. In conclusion, we demonstrate that PBUTs may compete with co-administrated drugs commonly used in CKD management for renal OAT1 mediated secretion, thus potentially compromising the residual renal function.


Assuntos
Túbulos Renais/efeitos dos fármacos , Proteína 1 Transportadora de Ânions Orgânicos/metabolismo , Medicamentos sob Prescrição/farmacologia , Eliminação Renal/efeitos dos fármacos , Insuficiência Renal Crônica/tratamento farmacológico , Toxinas Biológicas/sangue , Uremia/tratamento farmacológico , Antagonistas de Receptores de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Linhagem Celular , Furosemida/farmacologia , Humanos , Túbulos Renais/metabolismo , Túbulos Renais/fisiopatologia , Medicamentos sob Prescrição/metabolismo , Insuficiência Renal Crônica/sangue , Insuficiência Renal Crônica/fisiopatologia , Inibidores de Simportadores de Cloreto de Sódio e Potássio/farmacologia , Uremia/sangue , Uremia/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA