Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; 295(31): 10572-10580, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32546479

RESUMO

Collagen I is a major tendon protein whose polypeptide chains are linked by covalent crosslinks. It is unknown how the crosslinking contributes to the mechanical properties of tendon or whether crosslinking changes in response to stretching or relaxation. Since their discovery, imine bonds within collagen have been recognized as being important in both crosslink formation and collagen structure. They are often described as acidic or thermally labile, but no evidence is available from direct measurements of crosslink levels whether these bonds contribute to the mechanical properties of collagen. Here, we used MS to analyze these imine bonds after reduction with sodium borohydride while under tension and found that their levels are altered in stretched tendon. We studied the changes in crosslink bonding in tail tendon from 11-week-old C57Bl/6 mice at 4% physical strain, at 10% strain, and at breaking point. The crosslinks hydroxy-lysino-norleucine (HLNL), dihydroxy-lysino-norleucine (DHLNL), and lysino-norleucine (LNL) in-creased or decreased depending on the specific crosslink and amount of mechanical strain. We also noted a decrease in glycated lysine residues in collagen, indicating that the imine formed between circulating glucose and lysine is also stress labile. We also carried out mechanical testing, including cyclic testing at 4% strain, stress relaxation tests, and stress-strain profiles taken at breaking point, both with and without sodium borohydride reduction. The results from both the MS studies and mechanical testing provide insights into the chemical changes during tendon stretching and directly link these chemical changes to functional collagen properties.


Assuntos
Colágeno Tipo I/metabolismo , Colágeno/metabolismo , Estresse Mecânico , Cauda/metabolismo , Tendões/metabolismo , Animais , Glicosilação , Camundongos
2.
J Biol Chem ; 295(31): 10562-10571, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32381510

RESUMO

Collagen is a structural protein whose internal cross-linking critically determines the properties and functions of connective tissue. Knowing how the cross-linking of collagen changes with age is key to understanding why the mechanical properties of tissues change over a lifetime. The current scientific consensus is that collagen cross-linking increases with age and that this increase leads to tendon stiffening. Here, we show that this view should be reconsidered. Using MS-based analyses, we demonstrated that during aging of healthy C57BL/6 mice, the overall levels of collagen cross-linking in tail tendon decreased with age. However, the levels of lysine glycation in collagen, which is not considered a cross-link, increased dramatically with age. We found that in 16-week-old diabetic db/db mice, glycation reaches levels similar to those observed in 98-week-old C57BL/6 mice, while the other cross-links typical of tendon collagen either decreased or remained the same as those observed in 20-week-old WT mice. These results, combined with findings from mechanical testing of tendons from these mice, indicate that overall collagen cross-linking in mouse tendon decreases with age. Our findings also reveal that lysine glycation appears to be an important factor that contributes to tendon stiffening with age and in diabetes.


Assuntos
Envelhecimento/metabolismo , Colágeno/metabolismo , Cauda/metabolismo , Tendões/metabolismo , Animais , Glicosilação , Camundongos
3.
Front Immunol ; 14: 1223653, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38077328

RESUMO

Rac GTPases are required for neutrophil adhesion and migration, and for the neutrophil effector responses that kill pathogens. These Rac-dependent functions are impaired when neutrophils lack the activators of Rac, Rac-GEFs from the Prex, Vav, and Dock families. In this study, we demonstrate that Tiam1 is also expressed in neutrophils, governing focal complexes, actin cytoskeletal dynamics, polarisation, and migration, in a manner depending on the integrin ligand to which the cells adhere. Tiam1 is dispensable for the generation of reactive oxygen species but mediates degranulation and NETs release in adherent neutrophils, as well as the killing of bacteria. In vivo, Tiam1 is required for neutrophil recruitment during aseptic peritonitis and for the clearance of Streptococcus pneumoniae during pulmonary infection. However, Tiam1 functions differently to other Rac-GEFs. Instead of promoting neutrophil adhesion to ICAM1 and stimulating ß2 integrin activity as could be expected, Tiam1 restricts these processes. In accordance with these paradoxical inhibitory roles, Tiam1 limits the fMLP-stimulated activation of Rac1 and Rac2 in adherent neutrophils, rather than activating Rac as expected. Tiam1 promotes the expression of several regulators of small GTPases and cytoskeletal dynamics, including αPix, Psd4, Rasa3, and Tiam2. It also controls the association of Rasa3, and potentially αPix, Git2, Psd4, and 14-3-3ζ/δ, with Rac. We propose these latter roles of Tiam1 underlie its effects on Rac and ß2 integrin activity and on cell responses. Hence, Tiam1 is a novel regulator of Rac-dependent neutrophil responses that functions differently to other known neutrophil Rac-GEFs.


Assuntos
Integrinas , Neutrófilos , Humanos , Neutrófilos/metabolismo , Integrinas/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo , Proteínas 14-3-3/metabolismo , Antígenos CD18/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA