Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neuroimage ; 185: 300-312, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30347282

RESUMO

Transcranial Magnetic Stimulation (TMS) excites populations of neurons in the stimulated cortex, and the resulting activation may spread to connected brain regions. The distributed cortical response can be recorded with electroencephalography (EEG). Since TMS also stimulates peripheral sensory and motor axons and generates a loud "click" sound, the TMS-evoked EEG potentials (TEPs) reflect not only neural activity induced by transcranial neuronal excitation but also neural activity due to somatosensory and auditory processing. In 17 healthy young individuals, we systematically assessed the contribution of multisensory peripheral stimulation to TEPs using a TMS-compatible EEG system. Real TMS was delivered with a figure-of-eight coil over the left para-median posterior parietal cortex or superior frontal gyrus with the coil being oriented perpendicularly or in parallel to the target gyrus. We also recorded the EEG responses evoked by realistic sham stimulation over the posterior parietal and superior frontal cortex, mimicking the auditory and somatosensory sensations evoked by real TMS. We applied state-of-the-art procedures to attenuate somatosensory and auditory confounds during real TMS, including the placement of a foam layer underneath the coil and auditory noise masking. Despite these precautions, the temporal and spatial features of the cortical potentials evoked by real TMS at the prefrontal and parietal site closely resembled the cortical potentials evoked by realistic sham TMS, both for early and late TEP components. Our findings stress the need to include a peripheral multisensory control stimulation in the design of TMS-EEG studies to enable a dissociation between truly transcranial and non-transcranial components of TEPs.


Assuntos
Artefatos , Mapeamento Encefálico/métodos , Eletroencefalografia , Potenciais Evocados Auditivos/fisiologia , Estimulação Magnética Transcraniana/métodos , Adulto , Feminino , Humanos , Masculino , Adulto Jovem
2.
Exp Brain Res ; 229(2): 171-80, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23756602

RESUMO

We re-examined the issue of active versus passive proprioception to more fully characterize the accuracy afforded by proprioceptive information in natural, unconstrained, movements in 3-dimensions. Subjects made pointing movements with their non-dominant arm to various locations with eyes closed. They then proprioceptively localized the tip of its index finger with a prompt pointing movement of their dominant arm, thereby bringing the two indices in apposition. Subjects performed this task with remarkable accuracy. More remarkably, the same subjects were equally accurate at localizing the index finger when the arm was passively moved and maintained in its final position by an experimenter. Two subjects were also tested with eyes open, and they were no more accurate than with eyes closed. We also found that the magnitude of the error did not depend on movement duration, which is contrary to a key observation in support of the existence of an internal forward model-based state-reconstruction scheme. Three principal conclusions derive from this study. First, in unconstrained movements, proprioceptive information provides highly accurate estimates of limb position. Second, so-called active proprioception does not provide better estimates of limb position than passive proprioception. Lastly, in the active movement condition, an internal model-based estimation of limb position should, according to that hypothesis, have occurred throughout the movement. If so, it did not lead to a better estimate of final limb position, or lower variance of the estimate, casting doubt on the necessity to invoke this hypothetical construct.


Assuntos
Braço/fisiologia , Dedos/fisiologia , Movimento/fisiologia , Propriocepção/fisiologia , Desempenho Psicomotor/fisiologia , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Percepção Espacial/fisiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA