Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Elife ; 112022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36098634

RESUMO

Gap-junctional signaling mediates myriad cellular interactions in metazoans. Yet, how gap junctions control the positioning of cells in organs is not well understood. Innexins compose gap junctions in invertebrates and affect organ architecture. Here, we investigate the roles of gap-junctions in controlling distal somatic gonad architecture and its relationship to underlying germline stem cells in Caenorhabditis elegans. We show that a reduction of soma-germline gap-junctional activity causes displacement of distal sheath cells (Sh1) towards the distal end of the gonad. We confirm, by live imaging, transmission electron microscopy, and antibody staining, that bare regions-lacking somatic gonadal cell coverage of germ cells-are present between the distal tip cell (DTC) and Sh1, and we show that an innexin fusion protein used in a prior study encodes an antimorphic gap junction subunit that mispositions Sh1. We determine that, contrary to the model put forth in the prior study based on this fusion protein, Sh1 mispositioning does not markedly alter the position of the borders of the stem cell pool nor of the progenitor cell pool. Together, these results demonstrate that gap junctions can control the position of Sh1, but that Sh1 position is neither relevant for GLP-1/Notch signaling nor for the exit of germ cells from the stem cell pool.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Células Germinativas/metabolismo , Gônadas/metabolismo , Células-Tronco/metabolismo
2.
Elife ; 92020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32735213

RESUMO

Gap junctions are ubiquitous in metazoans and play critical roles in important biological processes, including electrical conduction and development. Yet, only a few defined molecules passing through gap junction channels have been linked to specific functions. We isolated gap junction channel mutants that reduce coupling between the soma and germ cells in the Caenorhabditis elegans gonad. We provide evidence that malonyl-CoA, the rate-limiting substrate for fatty acid synthesis (FAS), is produced in the soma and delivered through gap junctions to the germline; there it is used in fatty acid synthesis to critically support embryonic development. Separation of malonyl-CoA production from its site of utilization facilitates somatic control of germline development. Additionally, we demonstrate that loss of malonyl-CoA production in the intestine negatively impacts germline development independently of FAS. Our results suggest that metabolic outsourcing of malonyl-CoA may be a strategy by which the soma communicates nutritional status to the germline.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/embriologia , Desenvolvimento Embrionário/genética , Células Germinativas/crescimento & desenvolvimento , Malonil Coenzima A/genética , Animais , Caenorhabditis elegans/enzimologia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Junções Comunicantes/fisiologia , Gônadas/crescimento & desenvolvimento , Malonil Coenzima A/metabolismo
3.
Genetics ; 198(3): 1127-53, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25195067

RESUMO

In all animals examined, somatic cells of the gonad control multiple biological processes essential for germline development. Gap junction channels, composed of connexins in vertebrates and innexins in invertebrates, permit direct intercellular communication between cells and frequently form between somatic gonadal cells and germ cells. Gap junctions comprise hexameric hemichannels in apposing cells that dock to form channels for the exchange of small molecules. Here we report essential roles for two classes of gap junction channels, composed of five innexin proteins, in supporting the proliferation of germline stem cells and gametogenesis in the nematode Caenorhabditis elegans. Transmission electron microscopy of freeze-fracture replicas and fluorescence microscopy show that gap junctions between somatic cells and germ cells are more extensive than previously appreciated and are found throughout the gonad. One class of gap junctions, composed of INX-8 and INX-9 in the soma and INX-14 and INX-21 in the germ line, is required for the proliferation and differentiation of germline stem cells. Genetic epistasis experiments establish a role for these gap junction channels in germline proliferation independent of the glp-1/Notch pathway. A second class of gap junctions, composed of somatic INX-8 and INX-9 and germline INX-14 and INX-22, is required for the negative regulation of oocyte meiotic maturation. Rescue of gap junction channel formation in the stem cell niche rescues germline proliferation and uncovers a later channel requirement for embryonic viability. This analysis reveals gap junctions as a central organizing feature of many soma-germline interactions in C. elegans.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citologia , Caenorhabditis elegans/metabolismo , Gametogênese , Junções Comunicantes/metabolismo , Células Germinativas/citologia , Células Germinativas/metabolismo , Animais , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/ultraestrutura , Proteínas de Caenorhabditis elegans/genética , Polaridade Celular , Proliferação de Células , Análise Mutacional de DNA , Embrião não Mamífero/metabolismo , Endocitose , Epistasia Genética , Feminino , Técnica de Fratura por Congelamento , Duplicação Gênica , Regulação da Expressão Gênica no Desenvolvimento , Células Germinativas/ultraestrutura , Gônadas/citologia , Gônadas/ultraestrutura , Organismos Hermafroditas/citologia , Organismos Hermafroditas/metabolismo , Masculino , Mutação/genética , Oócitos/citologia , Oócitos/metabolismo , Ovulação , Transporte Proteico
4.
Development ; 136(13): 2211-21, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19502483

RESUMO

Soma-germline interactions control fertility at many levels, including stem cell proliferation, meiosis and gametogenesis, yet the nature of these fundamental signaling mechanisms and their potential evolutionary conservation are incompletely understood. In C. elegans, a sperm-sensing mechanism regulates oocyte meiotic maturation and ovulation, tightly coordinating sperm availability and fertilization. Sperm release the major sperm protein (MSP) signal to trigger meiotic resumption (meiotic maturation) and to promote contraction of the follicle-like gonadal sheath cells that surround oocytes. Using genetic mosaic analysis, we show that all known MSP-dependent meiotic maturation events in the germline require Galpha(s)-adenylate cyclase signaling in the gonadal sheath cells. We show that the MSP hormone promotes the sustained actomyosin-dependent cytoplasmic streaming that drives oocyte growth. Furthermore, we demonstrate that efficient oocyte production and cytoplasmic streaming require Galpha(s)-adenylate cyclase signaling in the gonadal sheath cells, thereby providing a somatic mechanism that coordinates oocyte growth and meiotic maturation with sperm availability. We present genetic evidence that MSP and Galpha(s)-adenylate cyclase signaling regulate oocyte growth and meiotic maturation in part by antagonizing gap-junctional communication between sheath cells and oocytes. In the absence of MSP or Galpha(s)-adenylate cyclase signaling, MSP binding sites are enriched and appear clustered on sheath cells. We discuss these results in the context of a model in which the sheath cells function as the major initial sensor of MSP, potentially via multiple classes of G-protein-coupled receptors. Our findings highlight a remarkable similarity between the regulation of meiotic resumption by soma-germline interactions in C. elegans and mammals.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , AMP Cíclico/metabolismo , Proteínas de Helminto/metabolismo , Meiose/fisiologia , Oócitos/fisiologia , Sistemas do Segundo Mensageiro/fisiologia , Adenilil Ciclases/genética , Adenilil Ciclases/metabolismo , Animais , Caenorhabditis elegans/anatomia & histologia , Proteínas de Caenorhabditis elegans/genética , Diferenciação Celular/fisiologia , Linhagem da Célula , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Junções Comunicantes/química , Junções Comunicantes/metabolismo , Gônadas/citologia , Gônadas/embriologia , Proteínas de Helminto/genética , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Mosaicismo , Oócitos/citologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
5.
Neural Dev ; 4: 16, 2009 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-19432959

RESUMO

BACKGROUND: Approximately 10% of Caenorhabditis elegans nervous system synapses are electrical, that is, gap junctions composed of innexins. The locomotory nervous system consists of several pairs of interneurons and three major classes of motor neurons, all with stereotypical patterns of connectivity that include gap junctions. Mutations in the two innexin genes unc-7 and unc-9 result in identical uncoordinated movement phenotypes, and their respective gene products were investigated for their contribution to electrical synapse connectivity. RESULTS: unc-7 encodes three innexin isoforms. Two of these, UNC-7S and UNC-7SR, are functionally equivalent and play an essential role in coordinated locomotion. UNC-7S and UNC-7SR are widely expressed and co-localize extensively with green fluorescent protein-tagged innexin UNC-9 in the ventral and dorsal nerve cords. A subset of UNC-7S/SR expression visualizes gap junctions formed between the AVB forward command interneurons and their B class motor neuron partners. Experiments indicate that expression of UNC-7S/SR in AVB and expression of UNC-9 in B motor neurons is necessary for these gap junctions to form. In Xenopus oocyte pairs, both UNC-7S and UNC-9 form homomeric gap junctions, and together they form heterotypic channels. Xenopus oocyte studies and co-localization studies in C. elegans suggest that UNC-7S and UNC-9 do not heteromerize in the same hemichannel, leading to the model that hemichannels in AVB:B motor neuron gap junctions are homomeric and heterotypic. CONCLUSION: UNC-7S and UNC-9 are widely expressed and contribute to a large number of the gap junctions identified in the locomotory nervous system. Proper AVB:B gap junction formation requires UNC-7S expression in AVB interneurons and UNC-9 expression in B motor neurons. More broadly, this illustrates that innexin identity is critical for electrical synapse specificity, but differential (compartmentalized) innexin expression cannot account for all of the specificity seen in C. elegans, and other factors must influence the determination of synaptic partners.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Sistema Nervoso Central/citologia , Sinapses Elétricas/fisiologia , Locomoção/fisiologia , Proteínas de Membrana/metabolismo , Animais , Animais Geneticamente Modificados , Comportamento Animal , Biofísica , Caenorhabditis elegans/anatomia & histologia , Proteínas de Caenorhabditis elegans/genética , Estimulação Elétrica , Sinapses Elétricas/genética , Proteínas de Fluorescência Verde/genética , Locomoção/genética , Potenciais da Membrana/genética , Proteínas de Membrana/genética , Modelos Moleculares , Neurônios Motores/metabolismo , Mutação , Oócitos , Técnicas de Patch-Clamp , Transfecção/métodos , Xenopus
6.
Genes Dev ; 21(3): 332-46, 2007 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-17289921

RESUMO

In Caenorhabditis elegans, VA and VB motor neurons arise as lineal sisters but synapse with different interneurons to regulate locomotion. VA-specific inputs are defined by the UNC-4 homeoprotein and its transcriptional corepressor, UNC-37/Groucho, which function in the VAs to block the creation of chemical synapses and gap junctions with interneurons normally reserved for VBs. To reveal downstream genes that control this choice, we have employed a cell-specific microarray strategy that has now identified unc-4-regulated transcripts. One of these genes, ceh-12, a member of the HB9 family of homeoproteins, is normally restricted to VBs. We show that expression of CEH-12/HB9 in VA motor neurons in unc-4 mutants imposes VB-type inputs. Thus, this work reveals a developmental switch in which motor neuron input is defined by differential expression of transcription factors that select alternative presynaptic partners. The conservation of UNC-4, HB9, and Groucho expression in the vertebrate motor circuit argues that similar mechanisms may regulate synaptic specificity in the spinal cord.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Homeodomínio/fisiologia , Neurônios Motores/fisiologia , Proteínas Nucleares/fisiologia , Transmissão Sináptica , Fatores de Transcrição/metabolismo , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/fisiologia , Junções Comunicantes , Regulação da Expressão Gênica , Proteínas de Homeodomínio/genética , Modelos Biológicos , Movimento/fisiologia , Proteínas Nucleares/genética , Transmissão Sináptica/genética , Fatores de Transcrição/fisiologia
7.
Dev Biol ; 256(2): 403-17, 2003 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-12679112

RESUMO

Innexins are the proposed structural components of gap junctions in invertebrates. Antibodies that specifically recognize the Caenorhabditis elegans innexin protein INX-3 were generated and used to examine the patterns of inx-3 gene expression and the subcellular sites of INX-3 localization. INX-3 is first detected in two-cell embryos, concentrated at the intercellular interface, and is expressed ubiquitously throughout the cellular proliferation phase of embryogenesis. During embryonic morphogenesis, INX-3 expression becomes more restricted. Postembryonically, INX-3 is expressed transiently in several cell types, while expression in the posterior pharynx persists throughout development. Through immuno-EM techniques, INX-3 was observed at gap junctions in the adult pharynx, providing supporting evidence that innexins are components of gap junctions. An inx-3 mutant was isolated through a combined genetic and immunocytochemical screen. Homozygous inx-3 mutants exhibit defects during embryonic morphogenesis. At the comma stage of early morphogenesis, variable numbers of cells are lost from the anterior of inx-3(lw68) mutants. A range of terminal defects is seen later in embryogenesis, including localized rupture of the hypodermis, failure of the midbody to elongate properly, abnormal contacts between hypodermal cells, and failure of the pharynx to attach to the anterior of the animal.


Assuntos
Caenorhabditis elegans/metabolismo , Conexinas/metabolismo , Junções Comunicantes/metabolismo , Animais , Caenorhabditis elegans/embriologia , Conexinas/genética , Junções Comunicantes/ultraestrutura , Regulação da Expressão Gênica no Desenvolvimento , Imuno-Histoquímica , Microscopia Eletrônica , Mutação , Faringe/anormalidades
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA