RESUMO
Environmental temperatures are increasing worldwide, threatening desert ectotherms already living at their thermal limits. Organisms with flexible thermoregulatory behaviours may be able to mitigate the effects of extreme temperatures by moving among microhabitats, yet little work has tracked movement patterns of desert ectotherms in the wild over diurnal scales or compared behaviour among seasons. Here, we used camera traps to track the thermoregulatory behaviour and microhabitat choices of 30 desert lizards (Messalina bahaldini) in custom, outdoor arenas that provided access to open, rock, and bush microhabitats. We found that in the summer, lizards preferred to move to the shaded microhabitats and remain there under warmer conditions. During winter, however, lizards' activity was not related to temperature, and lizards mostly chose to remain in the open habitat. Interestingly, in both seasons, lizards tended to remain in their current microhabitat and moved infrequently between certain combinations of microhabitats. Our study shows that thermoregulation (shade-seeking behaviour) is a major factor during summer, helping lizards to avoid extreme temperatures, but not during winter, and shows a novel effect of current microhabitat on movement, suggesting that other biotic or abiotic factors may also drive microhabitat choice. Understanding the complex factors at play in microhabitat choice is critical for developing conservation programs that effectively mitigate the negative impacts of climate change on desert animals.
Assuntos
Regulação da Temperatura Corporal , Clima Desértico , Lagartos , Estações do Ano , Animais , Lagartos/fisiologia , Ecossistema , Comportamento Animal , Movimento , MasculinoRESUMO
Worldwide habitat loss, land-use changes, and climate change threaten biodiversity, and we urgently need models that predict the combined impacts of these threats on organisms. Current models, however, overlook microhabitat diversity within landscapes and so do not accurately inform conservation efforts, particularly for ectotherms. Here, we built and field-parameterized a model to examine the effects of habitat loss and climate change on activity and microhabitat selection by a diurnal desert lizard. Our model predicted that lizards in rock-free areas would reduce summer activity levels (e.g. foraging, basking) and that future warming will gradually decrease summer activity in rocky areas, as even large rocks become thermally stressful. Warmer winters will enable more activity but will require bushes and small rocks as shade retreats. Hence, microhabitats that may seem unimportant today will become important under climate change. Modelling frameworks should consider the microhabitat requirements of organisms to improve conservation outcomes.
RESUMO
Vertebrates show substantial interspecific variation in brain size in relation to body mass. It has long been recognized that the evolution of large brains is associated with both costs and benefits, and it is their net benefit which should be favoured by natural selection. On one hand, the substantial energetic cost imposed by the maintenance of neural tissue is expected to compromise the energetic budget of organisms with large brains and their investment in other critical organs (expensive brain framework, EBF) or important physiological process, such as somatic maintenance and repair, thus accelerating ageing that shortens lifespan, as predicted by the disposable soma theory (DST). However, selection towards larger brain size can provide cognitive benefits (e.g., high behavioural flexibility) that may mitigate extrinsic mortality pressures, and thus may indirectly select for slower ageing that prolongs lifespan, as predicted by the cognitive buffer hypothesis (CBH). The relationship between longevity and brain size has been investigated to date only among terrestrial vertebrates, although the same selective forces acting on those species may also affect vertebrates living in aquatic habitats, such as fish. Thus, whether this evolutionary trade-off for brain size and longevity exists on a large scale among fish clades remains to be addressed. In this study, using a global dataset of 407 fish species, I undertook the first phylogenetic test of the brain size/longevity relationship in aquatic vertebrate species. The study revealed a negative relationship between brain size and longevity among cartilaginous fish confirming EBF and DST. However, no pattern emerged among bony fish species. Among sharks and rays, the high metabolic cost of producing neural tissue transcends the cognitive benefits of evolving a larger brain. Consequently, my findings suggest that the cost of maintaining brain tissue is relatively higher in ectothermic species than in endothermic ones.
Assuntos
Encéfalo , Longevidade , Envelhecimento , Animais , Evolução Biológica , Encéfalo/metabolismo , Peixes , Tamanho do Órgão , FilogeniaRESUMO
Microscale differences in the habitats organisms occupy can influence selection regimes and promote intraspecific variation of traits. Temperature-dependent traits can be locally adapted to climatic conditions or be highly conserved and insensitive to directional selection under all but the most extreme regimes, and thus be similar across populations. The opposing slopes of Nahal Oren canyon in the Carmel Mountains, Israel, are strikingly different: the south-facing slope receives intensive solar radiation, is hot and supports mostly annual vegetation, whereas the north-facing slope is ~10°C cooler, more humid, and supports Mediterranean woodland. We examined whether these differences manifest in the thermal physiology of a common gecko species Ptyodactylus guttatus in controlled laboratory conditions. We predicted that geckos from the hotter south-facing slope would prefer higher temperatures, have faster gut passage times, lower metabolic and evaporative water loss rates, and start diel activity earlier compared with north-facing slope conspecifics. Contrary to these predictions, there were no differences between any of the ecophysiological traits in geckos from the opposing slopes. Nevertheless, our data showed that individuals from the north-facing slope were generally more active in earlier hours of the afternoon compared with south-facing individuals. We suggest that P. guttatus individuals disperse between the slopes and either gene-flow or behavioral plasticity deter local adaptation, resulting in similar physiological traits. Perhaps a stronger contrast in climatic conditions and a stronger barrier are needed to result in interpopulation divergence in temperature-dependent traits.
Assuntos
Ecossistema , Lagartos , Adaptação Fisiológica , Animais , Israel , FenótipoRESUMO
Microhabitats provide ecological and physiological benefits to animals, sheltering them from predation and extreme temperatures and offering an additional supply of water and food. However, most studies have assumed no energetic costs of searching for microhabitats or moving between them, or considered how the availability of microhabitats may affect the energy reserves of animals and how such effects may differ between seasons. To fill these gaps, we studied how the body condition of lizards is affected by microhabitat availability in the extreme environment of the Judean Desert. In particular, we quantified how vegetation and rock cover in the vicinity of these lizards affect their body condition during summer and winter. First, we used aerial imagery to map the vegetation/rock cover at two study sites. Next, we collected 68 adult lizards and examined how their body condition varies across seasons and availability of vegetation and rock cover. In addition, we examined how vegetation and rock cover may differ in their effective distance (i.e., the distance that best explains body condition of lizards). We found that lizards body condition was better if they were collected closer to a higher availability of vegetation or rocks. However, while close proximity (within 10 m) was the best predictor for the positive effect of rocks, a greater distance (up to 90 m) was the best predictor for the effect of the vegetation cover. Moreover, the positive effect of vegetation was 12-fold higher than the effect of rocks. Interestingly, although the lizards' body condition during winter was poorer than during summer, the positive effects of rock and vegetation cover remained constant between the seasons. This similarity of benefits across seasons suggests that shaded microhabitats have important additional ecological roles regardless of climate, and that they may provide thermoregulatory benefits in winter too. We also found a synergic effect of vegetation and rock cover on the lizards' body condition, suggesting that their roles are complementary rather than overlapping. Our research has revealed the importance of shade- and shelter-providing microhabitats in both summer and winter. We suggest that proximity to microhabitat diversity may contribute to better body condition in lizards or, alternatively, facilitates competition and attracts lizards with better body condition. Comprehending the complex interactions between animals and different microhabitats is critical for developing better conservation plans, understanding the risks of climate change, and suggesting mitigation strategies.
Assuntos
Lagartos , Animais , Lagartos/fisiologia , Estações do Ano , Ecossistema , Mudança Climática , Regulação da Temperatura CorporalRESUMO
Populations of the same species occupying different microhabitats can either exhibit generalized traits across them or display intraspecific variability, adapting to each microhabitat in order to maximize performance. Intraspecific variability contributes to the generation of diversity, following selection and adaptation, and understanding such variability is important for comprehending how individuals choose their microhabitats. Compared with interspecific variability, however, intraspecific variability in functional morphology and its relationship with microhabitat preference and use have been relatively little studied. Here we examined whether populations of the gecko Mediodactylus kotschyi that differ in the substrates they occupy display habitat-specific behaviors and differing morphologies associated with functional adaptation to their microhabitats. We collected 207 geckos from under or on rocks or on trees from seven populations in Greece. On large islands individuals occupy both substrates; whereas small islets are devoid of trees and the geckos are restricted to rocks, while on the mainland they are only found on trees. We determined gecko substrate preferences in the laboratory, together with their clinging abilities to the different substrates. We measured their limbs, digits, and claws and assessed how these measurements relate to clinging ability. Geckos from all populations preferred the tree made available to them, but this preference was not statistically significant. Geckos from both large and small islands clung better to the tree than to the rock in the laboratory, while those from the mainland clung similarly to both substrates. Geckos collected from trees had longer manual digits and hind limbs. Geckos collected from large and small islands had taller (longer on the dorso-ventral axis; henceforth "deeper") claws. Longer digits and deeper but shorter claws were associated with a better ability to cling to rocks. Our findings suggest that while M. kotschyi is potentially preferentially arboreal, due to the great variation and plasticity it possesses, it can successfully also exploit the habitats available on the smallest, treeless islets in the Aegean Sea. Our study suggests that the dichotomous use of generalist versus specialist in describing species' habitat use is oversimplified, and we suggest the use of a generalist-specialist gradient instead.