Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Int J Mol Sci ; 24(11)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37298207

RESUMO

Cardiotoxins (CaTx) of the three-finger toxin family are one of the main components of cobra venoms. Depending on the structure of the N-terminal or the central polypeptide loop, they are classified into either group I and II or P- and S-types, respectively, and toxins of different groups or types interact with lipid membranes variably. While their main target in the organism is the cardiovascular system, there is no data on the effects of CaTxs from different groups or types on cardiomyocytes. To evaluate these effects, a fluorescence measurement of intracellular Ca2+ concentration and an assessment of the rat cardiomyocytes' shape were used. The obtained results showed that CaTxs of group I containing two adjacent proline residues in the N-terminal loop were less toxic to cardiomyocytes than group II toxins and that CaTxs of S-type were less active than P-type ones. The highest activity was observed for Naja oxiana cobra cardiotoxin 2, which is of P-type and belongs to group II. For the first time, the effects of CaTxs of different groups and types on the cardiomyocytes were studied, and the data obtained showed that the CaTx toxicity to cardiomyocytes depends on the structures both of the N-terminal and central polypeptide loops.


Assuntos
Proteínas Cardiotóxicas de Elapídeos , Contratura , Toxinas Biológicas , Ratos , Animais , Proteínas Cardiotóxicas de Elapídeos/farmacologia , Proteínas Cardiotóxicas de Elapídeos/toxicidade , Cálcio , Miócitos Cardíacos , Venenos Elapídicos/química , Peptídeos , Cálcio da Dieta
2.
Cell Mol Life Sci ; 78(23): 7777-7794, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34714362

RESUMO

The COVID-19 pandemic caused by SARS-CoV-2 requires new treatments both to alleviate the symptoms and to prevent the spread of this disease. Previous studies demonstrated good antiviral and virucidal activity of phospholipase A2s (PLA2s) from snake venoms against viruses from different families but there was no data for coronaviruses. Here we show that PLA2s from snake venoms protect Vero E6 cells against SARS-CoV-2 cytopathic effects. PLA2s showed low cytotoxicity to Vero E6 cells with some activity at micromolar concentrations, but strong antiviral activity at nanomolar concentrations. Dimeric PLA2 from the viper Vipera nikolskii and its subunits manifested especially potent virucidal effects, which were related to their phospholipolytic activity, and inhibited cell-cell fusion mediated by the SARS-CoV-2 spike glycoprotein. Moreover, PLA2s interfered with binding both of an antibody against ACE2 and of the receptor-binding domain of the glycoprotein S to 293T/ACE2 cells. This is the first demonstration of a detrimental effect of PLA2s on ß-coronaviruses. Thus, snake PLA2s are promising for the development of antiviral drugs that target the viral envelope, and could also prove to be useful tools to study the interaction of viruses with host cells.


Assuntos
Fosfolipases A2/farmacologia , SARS-CoV-2/efeitos dos fármacos , Glicoproteína da Espícula de Coronavírus/metabolismo , Venenos de Víboras/farmacologia , Ligação Viral/efeitos dos fármacos , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Afinidade de Anticorpos/efeitos dos fármacos , Antivirais/farmacologia , Fusão Celular , Linhagem Celular , Chlorocebus aethiops , Efeito Citopatogênico Viral/efeitos dos fármacos , Células HEK293 , Humanos , Modelos Moleculares , Domínios Proteicos/efeitos dos fármacos , Ressonância de Plasmônio de Superfície , Células Vero , Venenos de Víboras/enzimologia , Tratamento Farmacológico da COVID-19
3.
Biochem Biophys Res Commun ; 558: 141-146, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-33915327

RESUMO

Cobra cytotoxins (CTs), the three-fingered proteins, feature high amino acid sequence homology in the beta-strands and variations in the loop regions. We selected a pair of cytotoxins from Naja kaouthia crude venom to clarify the sequence-structure relationships. Using chromatography and mass spectroscopy, we separated and identified the mixture of cytotoxins 2 and 3, differentiated by the only Val 41/Ala 41 substitution. Here, using natural abundance 13C, 15N NMR-spectroscopy we performed chemical shift assignments of the signals of the both toxins in aqueous solution in the major and minor forms. Combining NOE and chemical shift data, the toxins' spatial structure was determined. Finally, we proved that the tip of the "finger"-2, or the loop-2 of cytotoxins adopts the shape of an omega-loop with a tightly-bound water molecule in its cavity. Comparison with other NMR and X-ray structures of cytotoxins possessing different amino acid sequences reveals spatial similarity in this family of proteins, including the loop-2 region, previously considered to be flexible.


Assuntos
Proteínas Cardiotóxicas de Elapídeos/química , Proteínas Cardiotóxicas de Elapídeos/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Proteínas Cardiotóxicas de Elapídeos/classificação , Venenos Elapídicos/química , Venenos Elapídicos/genética , Elapidae/genética , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica
4.
J Biol Chem ; 290(37): 22747-58, 2015 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-26221036

RESUMO

Ionotropic receptors of γ-aminobutyric acid (GABAAR) regulate neuronal inhibition and are targeted by benzodiazepines and general anesthetics. We show that a fluorescent derivative of α-cobratoxin (α-Ctx), belonging to the family of three-finger toxins from snake venoms, specifically stained the α1ß3γ2 receptor; and at 10 µm α-Ctx completely blocked GABA-induced currents in this receptor expressed in Xenopus oocytes (IC50 = 236 nm) and less potently inhibited α1ß2γ2 ≈ α2ß2γ2 > α5ß2γ2 > α2ß3γ2 and α1ß3δ GABAARs. The α1ß3γ2 receptor was also inhibited by some other three-finger toxins, long α-neurotoxin Ls III and nonconventional toxin WTX. α-Conotoxin ImI displayed inhibitory activity as well. Electrophysiology experiments showed mixed competitive and noncompetitive α-Ctx action. Fluorescent α-Ctx, however, could be displaced by muscimol indicating that most of the α-Ctx-binding sites overlap with the orthosteric sites at the ß/α subunit interface. Modeling and molecular dynamic studies indicated that α-Ctx or α-bungarotoxin seem to interact with GABAAR in a way similar to their interaction with the acetylcholine-binding protein or the ligand-binding domain of nicotinic receptors. This was supported by mutagenesis studies and experiments with α-conotoxin ImI and a chimeric Naja oxiana α-neurotoxin indicating that the major role in α-Ctx binding to GABAAR is played by the tip of its central loop II accommodating under loop C of the receptors.


Assuntos
Proteínas Neurotóxicas de Elapídeos , Conotoxinas , Simulação de Dinâmica Molecular , Receptores de GABA-A/química , Receptores de GABA-A/metabolismo , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Proteínas Neurotóxicas de Elapídeos/química , Proteínas Neurotóxicas de Elapídeos/farmacologia , Conotoxinas/química , Conotoxinas/farmacologia , Elapidae , Camundongos , Estrutura Secundária de Proteína , Receptores de GABA-A/genética
6.
Spectrochim Acta A Mol Biomol Spectrosc ; 314: 124239, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38579426

RESUMO

The knowledge of variations in the composition of venoms from different snakes is important from both theoretical and practical points of view, in particular, at developing and selecting an antivenom. Many studies on this topic are conducted with pooled venoms, while the existence and significance of variations in the composition of venoms between individual snakes of the same species are emphasized by many authors. It is important to study both inter- and intra-specific, including intra-population, venom variations, because intra-specific variations in the venom composition may affect the effectiveness of antivenoms as strongly as inter-specific. In this work, based on venom Raman spectroscopy with principal component analysis, we assessed the variations in venoms of individual snakes of the Vipera nikolskii species from two populations and compared these intra-specific variations with inter-specific variations (with regard to the other related species). We demonstrated intra-specific (inter- and intra-population) differences in venom compositions which are smaller than inter-specific variations. We also assessed the compositions of V. nikolskii venoms from two populations to explain inter-population differences. The method used is rapid and requires virtually no preparation of samples, used in extremely small quantities, allowing the venoms of individual snakes to be analyzed. In addition, the method is informative and capable of detecting fairly subtle differences in the composition of venoms.


Assuntos
Análise Espectral Raman , Peçonhas , Antivenenos
7.
J Biol Chem ; 287(9): 6725-34, 2012 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-22223648

RESUMO

In Naja kaouthia cobra venom, we have earlier discovered a covalent dimeric form of α-cobratoxin (αCT-αCT) with two intermolecular disulfides, but we could not determine their positions. Here, we report the αCT-αCT crystal structure at 1.94 Å where intermolecular disulfides are identified between Cys(3) in one protomer and Cys(20) of the second, and vice versa. All remaining intramolecular disulfides, including the additional bridge between Cys(26) and Cys(30) in the central loops II, have the same positions as in monomeric α-cobratoxin. The three-finger fold is essentially preserved in each protomer, but the arrangement of the αCT-αCT dimer differs from those of noncovalent crystallographic dimers of three-finger toxins (TFT) or from the κ-bungarotoxin solution structure. Selective reduction of Cys(26)-Cys(30) in one protomer does not affect the activity against the α7 nicotinic acetylcholine receptor (nAChR), whereas its reduction in both protomers almost prevents α7 nAChR recognition. On the contrary, reduction of one or both Cys(26)-Cys(30) disulfides in αCT-αCT considerably potentiates inhibition of the α3ß2 nAChR by the toxin. The heteromeric dimer of α-cobratoxin and cytotoxin has an activity similar to that of αCT-αCT against the α7 nAChR and is more active against α3ß2 nAChRs. Our results demonstrate that at least one Cys(26)-Cys(30) disulfide in covalent TFT dimers, similar to the monomeric TFTs, is essential for their recognition by α7 nAChR, although it is less important for interaction of covalent TFT dimers with the α3ß2 nAChR.


Assuntos
Proteínas Neurotóxicas de Elapídeos/química , Dissulfetos/química , Receptores Nicotínicos/química , Alquilação , Sítios de Ligação , Proteínas Neurotóxicas de Elapídeos/metabolismo , Cristalografia por Raios X , Dimerização , Dissulfetos/metabolismo , Modelos Químicos , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Ensaio Radioligante , Receptores Nicotínicos/metabolismo , Receptor Nicotínico de Acetilcolina alfa7
8.
J Biol Chem ; 287(32): 27079-86, 2012 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-22613724

RESUMO

Azemiopsin, a novel polypeptide, was isolated from the Azemiops feae viper venom by combination of gel filtration and reverse-phase HPLC. Its amino acid sequence (DNWWPKPPHQGPRPPRPRPKP) was determined by means of Edman degradation and mass spectrometry. It consists of 21 residues and, unlike similar venom isolates, does not contain cysteine residues. According to circular dichroism measurements, this peptide adopts a ß-structure. Peptide synthesis was used to verify the determined sequence and to prepare peptide in sufficient amounts to study its biological activity. Azemiopsin efficiently competed with α-bungarotoxin for binding to Torpedo nicotinic acetylcholine receptor (nAChR) (IC(50) 0.18 ± 0.03 µm) and with lower efficiency to human α7 nAChR (IC(50) 22 ± 2 µm). It dose-dependently blocked acetylcholine-induced currents in Xenopus oocytes heterologously expressing human muscle-type nAChR and was more potent against the adult form (α1ß1εδ) than the fetal form (α1ß1γδ), EC(50) being 0.44 ± 0.1 µm and 1.56 ± 0.37 µm, respectively. The peptide had no effect on GABA(A) (α1ß3γ2 or α2ß3γ2) receptors at a concentration up to 100 µm or on 5-HT(3) receptors at a concentration up to 10 µm. Ala scanning showed that amino acid residues at positions 3-6, 8-11, and 13-14 are essential for binding to Torpedo nAChR. In biological activity azemiopsin resembles waglerin, a disulfide-containing peptide from the Tropidechis wagleri venom, shares with it a homologous C-terminal hexapeptide, but is the first natural toxin that blocks nAChRs and does not possess disulfide bridges.


Assuntos
Peptídeos/farmacologia , Receptores Nicotínicos/metabolismo , Venenos de Víboras/química , Sequência de Aminoácidos , Animais , Cromatografia Líquida de Alta Pressão , Dicroísmo Circular , Ligantes , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/metabolismo , Homologia de Sequência de Aminoácidos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Venenos de Víboras/metabolismo , Venenos de Víboras/farmacologia
9.
Biomedicines ; 11(4)2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37189733

RESUMO

Protozoal infections are a world-wide problem. The toxicity and somewhat low effectiveness of the existing drugs require the search for new ways of protozoa suppression. Snake venom contains structurally diverse components manifesting antiprotozoal activity; for example, those in cobra venom are cytotoxins. In this work, we aimed to characterize a novel antiprotozoal component(s) in the Bungarus multicinctus krait venom using the ciliate Tetrahymena pyriformis as a model organism. To determine the toxicity of the substances under study, surviving ciliates were registered automatically by an original BioLaT-3.2 instrument. The krait venom was separated by three-step liquid chromatography and the toxicity of the obtained fractions against T. pyriformis was analyzed. As a result, 21 kDa protein toxic to Tetrahymena was isolated and its amino acid sequence was determined by MALDI TOF MS and high-resolution mass spectrometry. It was found that antiprotozoal activity was manifested by ß-bungarotoxin (ß-Bgt) differing from the known toxins by two amino acid residues. Inactivation of ß-Bgt phospholipolytic activity with p-bromophenacyl bromide did not change its antiprotozoal activity. Thus, this is the first demonstration of the antiprotozoal activity of ß-Bgt, which is shown to be independent of its phospholipolytic activity.

10.
Toxins (Basel) ; 14(2)2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-35202116

RESUMO

Cardiotoxins (CaTxs) are a group of snake toxins that affect the cardiovascular system (CVS). Two types (S and P) of CaTxs are known, but the exact differences in the effects of these types on CVS have not been thoroughly studied. We investigated cellular mechanisms of action on CVS for Naja oxiana cobra CaTxs CTX-1 (S-type) and CTX-2 (P-type) focusing on the papillary muscle (PM) contractility and contraction of aortic rings (AR) supplemented by pharmacological analysis. It was found that CTX-1 and CTX-2 exerted dose-dependent effects manifested in PM contracture and AR contraction. CTX-2 impaired functions of PM and AR more strongly than CTX-1. Effects of CaTxs on PM were significantly reduced by nifedipine, an L-type Ca2+ channel blocker, and by KB-R7943, an inhibitor of reverse-mode Na+/Ca2+ exchange. Furthermore, 2-aminoethoxydiphenyl borate, an inhibitor of store-operated calcium entry, partially restored PM contractility damaged by CaTxs. The CaTx influence on AR contracture was significantly reduced by nifedipine and KB-R7943. The involvement of reverse-mode Na+/Ca2+ exchange in the effect of CaTxs on the rat aorta was shown for the first time. The results obtained indicate that CaTx effects on CVS are mainly associated with disturbance of transporting systems responsible for the Ca2+ influx.


Assuntos
Aorta/efeitos dos fármacos , Cardiotoxinas/farmacologia , Venenos Elapídicos , Naja naja , Músculos Papilares/efeitos dos fármacos , Animais , Aorta/fisiologia , Masculino , Contração Muscular/efeitos dos fármacos , Músculos Papilares/fisiologia , Ratos Wistar , Vasoconstrição/efeitos dos fármacos
11.
Artigo em Inglês | MEDLINE | ID: mdl-35432493

RESUMO

Background: The cardiovascular system is one of the first systems to be affected by snake toxins; but not many toxins exert a direct effect on the heart. Cobra venom cardiotoxins are among those few toxins that attack the heart. Although the two cardiotoxin types (S and P) differ in their central-loop structure, it is not known whether they differ in their effect on the mammalian heart. We compared the effects of S- and P-type cardiotoxins, CTÐ¥-1 and CTÐ¥-2, respectively, from the cobra Naja oxiana, on the isolated rat heart. Methods: An isolated rat heart perfused according to the Langendorff technique was used in this study to investigate the activity of cardiotoxins CTX-1 and CTX-2. The following parameters were registered: the left ventricular developed pressure, calculated as the difference between systolic and diastolic pressure in the left ventricle, the end-diastolic pressure, the heart rate, time to maximal end-diastolic pressure (heart contracture), and time to depression of the heart contraction. Results: Both cardiotoxins at the concentration of 5 µg/mL initially produce a slight increase in systolic intraventricular pressure, followed by its rapid decrease with a simultaneous increase in diastolic intraventricular pressure until reaching contracture. CTX-2 blocks cardiac contractions faster than CTX-1; in its presence the maximum diastolic pressure is reached faster and the magnitude of the developed contracture is higher. Conclusion: The P-type cardiotoxin CTX-2 more strongly impairs rat heart functional activity than the S-type cardiotoxin CTX-1, as expressed in its faster blockage of cardiac contractions as well as in more rapid development and greater magnitude of contracture in its presence.

12.
Toxins (Basel) ; 14(2)2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35202176

RESUMO

Cobra cytotoxins (CTs) belong to the three-fingered protein family and possess membrane activity. Here, we studied cytotoxin 13 from Naja naja cobra venom (CT13Nn). For the first time, a spatial model of CT13Nn with both "water" and "membrane" conformations of the central loop (loop-2) were determined by X-ray crystallography. The "water" conformation of the loop was frequently observed. It was similar to the structure of loop-2 of numerous CTs, determined by either NMR spectroscopy in aqueous solution, or the X-ray method. The "membrane" conformation is rare one and, to date has only been observed by NMR for a single cytotoxin 1 from N. oxiana (CT1No) in detergent micelle. Both CT13Nn and CT1No are S-type CTs. Membrane-binding of these CTs probably involves an additional step-the conformational transformation of the loop-2. To confirm this suggestion, we conducted molecular dynamics simulations of both CT1No and CT13Nn in the Highly Mimetic Membrane Model of palmitoiloleoylphosphatidylglycerol, starting with their "water" NMR models. We found that the both toxins transform their "water" conformation of loop-2 into the "membrane" one during the insertion process. This supports the hypothesis that the S-type CTs, unlike their P-type counterparts, require conformational adaptation of loop-2 during interaction with lipid membranes.


Assuntos
Proteínas Cardiotóxicas de Elapídeos/química , Cristalografia por Raios X/métodos , Citotoxinas/química , Modelos Moleculares , Estrutura Molecular , Conformação Proteica
13.
Toxins (Basel) ; 15(1)2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36668826

RESUMO

In aqueous solutions, cobra cytotoxins (CTX), three-finger folded proteins, exhibit conformational equilibrium between conformers with either cis or trans peptide bonds in the N-terminal loop (loop-I). The equilibrium is shifted to the cis form in toxins with a pair of adjacent Pro residues in this loop. It is known that CTX with a single Pro residue in loop-I and a cis peptide bond do not interact with lipid membranes. Thus, if a cis peptide bond is present in loop-I, as in a Pro-Pro containing CTX, this should weaken its lipid interactions and likely cytotoxic activities. To test this, we have isolated seven CTX from Naja naja and N. haje cobra venoms. Antibacterial and cytotoxic activities of these CTX, as well as their capability to induce calcein leakage from phospholipid liposomes, were evaluated. We have found that CTX with a Pro-Pro peptide bond indeed exhibit attenuated membrane-perturbing activity in model membranes and lower cytotoxic/antibacterial activity compared to their counterparts with a single Pro residue in loop-I.


Assuntos
Proteínas Cardiotóxicas de Elapídeos , Elapidae , Animais , Elapidae/metabolismo , Proteínas Cardiotóxicas de Elapídeos/toxicidade , Proteínas Cardiotóxicas de Elapídeos/química , Citotoxinas/toxicidade , Citotoxinas/química , Conformação Proteica , Venenos Elapídicos/toxicidade , Venenos Elapídicos/química , Fosfolipídeos/metabolismo , Peptídeos/toxicidade
14.
J Venom Res ; 10: 23-29, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33024544

RESUMO

Venoms of viperid snakes affect mostly hemostasis, while C-type lectin-like proteins (CTLPs), one of the main components of viperid venoms, act as anticoagulants, procoagulants, or agonists/antagonists of platelet activation. However, we have shown earlier that CTLPs from the saw-scaled viper Echis multisquamatus, called emunarecins EM1 and EM2, were able to inhibit nicotinic acetylcholine receptors (nAChRs) in neurons of a pond snail (Lymnaea stagnalis). Here we analysed the structure of the emunarecins by mass spectrometry and report that EM1 and EM2 inhibit fluorescent α-bungarotoxin binding to both muscle-type nAChRs from Torpedo californica and human neuronal α7 nAChRs. EM1 at 23µM and EM2 at 9µM almost completely prevented fluorecsent α-bungarotoxin binding to muscle-type nAChRs. Interaction with human neuronal α7 nAChR was weaker; EM1 at the concentration of 23µM blocked the α-bungarotoxin binding only by about 40% and EM2 at 9µM by about 20%. The efficiency of the EM2 interaction with nAChRs was comparable to that of a non-conventional toxin, WTX, from Naja kaouthia cobra venom. Together with the data obtained earlier, these results show that CTLPs may represent new nAChR ligands.

15.
Toxins (Basel) ; 12(5)2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32429047

RESUMO

Snake venoms possess lethal activities against different organisms, ranging from bacteria to higher vertebrates. Several venoms were shown to be active against protozoa, however, data about the anti-protozoan activity of cobra and viper venoms are very scarce. We tested the effects of venoms from several snake species on the ciliate Tetrahymena pyriformis. The venoms tested induced T. pyriformis immobilization, followed by death, the most pronounced effect being observed for cobra Naja sumatrana venom. The active polypeptides were isolated from this venom by a combination of gel-filtration, ion exchange and reversed-phase HPLC and analyzed by mass spectrometry. It was found that these were cytotoxins of the three-finger toxin family. The cytotoxins from several cobra species were tested and manifested toxicity for infusorians. Light microscopy revealed that, because of the cytotoxin action, the infusorians' morphology was changed greatly, from teardrop-like to an almost spherical shape, this alteration being accompanied by a leakage of cell contents. Fluorescence microscopy showed that the fluorescently labelled cytotoxin 2 from cobra N. oxiana was localized mainly at the membrane of killed infusorians, indicating that cytotoxins may kill T. pyriformis by causing membrane rupture. This work is the first evidence of the antiprotozoal activity of cobra venom cytotoxins, as demonstrated by the example of the ciliate T. pyriformis.


Assuntos
Antiprotozoários/farmacologia , Citotoxinas/farmacologia , Venenos Elapídicos/química , Peptídeos/farmacologia , Tetrahymena pyriformis/efeitos dos fármacos , Antiprotozoários/isolamento & purificação , Citotoxinas/isolamento & purificação , Peptídeos/isolamento & purificação
16.
Toxicon ; 53(1): 162-8, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19041663

RESUMO

Cysteine-rich proteins found in animal venoms (CRISP-Vs) are members of a large family of cysteine-rich secretory proteins (CRISPs). CRISP-Vs acting on different ion channels were found in venoms or mRNA (cDNA) encoding CRISP-Vs were cloned from snakes of three main families (Elapidae, Colubridae and Viperidae). About thirty snake CRISP-Vs were sequenced so far, however no complete sequence for CRISP-V from Viperinae subfamily was reported. We have cloned and sequenced for the first time cDNAs encoding CRISP-Vs from Vipera nikolskii and Vipera berus vipers (Viperinae). The deduced mature CRISP-V amino acid sequences consist of 220 amino acid residues. Phylogenetic analysis showed that viper proteins are closely related to those of Crotalinae snakes. The presence of CRISP-V in the V. berus venom was revealed using a combination of gel-filtration chromatography, electrophoresis and MALDI mass spectrometry. The finding of the putative channel blocker in viper venom may indicate its action on prey nervous system.


Assuntos
Cisteína/química , Filogenia , Proteínas/química , Proteínas/genética , Venenos de Víboras/química , Viperidae/fisiologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , DNA Complementar , Dados de Sequência Molecular , RNA/química , RNA/genética , Venenos de Víboras/genética , Venenos de Víboras/metabolismo , Viperidae/genética
17.
Toxicon ; 51(4): 524-37, 2008 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-18083205

RESUMO

For the first time the venom of recently established viper species Vipera nikolskii was fractionated and two heterodimeric phospholipases A(2) (HDP-1 and HDP-2) were isolated. Isolation of HDP-1 and HDP-2 is the first indication of the presence of two heterodimeric phospholipases A(2) in the venom of one viper species. When tested on the frog neuromuscular junction, isolated proteins affected neuromuscular transmission acting presynaptically. Using RP-HPLC, each heterodimer was separated into two monomeric subunits: basic phospholipase A(2) (HDP-1P and HDP-2P) and acidic component without enzymatic activity (HDP-In). The complete primary structures of subunits were deduced from corresponding sequences of cDNAs. The determined amino acid sequences were homologous to those of vipoxin from Vipera ammodytes and vaspin from Vipera aspis. Similar proteins were not found earlier in the well-studied venom of Vipera berus, the species from which V. nikolskii was recently separated. Our finding supports at the biochemical level the correctness of the establishment of V. nikolskii as an independent species. The finding of similar proteins (HDPs and vipoxin) in geographically remote species (V. nikolskii and V. ammodytes) corroborates the hypothesis about the pre-existence of genes encoding these proteins in all true viper species and their expression under certain conditions.


Assuntos
Fosfolipases A2/metabolismo , Proteínas de Répteis/metabolismo , Venenos de Víboras/enzimologia , Viperidae/classificação , Viperidae/fisiologia , Sequência de Aminoácidos , Animais , Anticoagulantes/farmacologia , Anuros , Clonagem Molecular , DNA Complementar/genética , Dados de Sequência Molecular , Junção Neuromuscular/efeitos dos fármacos , Fosfolipases A2/química , Fosfolipases A2/farmacologia , Filogenia , Agregação Plaquetária/efeitos dos fármacos , Proteínas de Répteis/química , Proteínas de Répteis/farmacologia
18.
Toxicon ; 49(7): 995-1001, 2007 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-17341427

RESUMO

The existing data indicate that snake venom is most toxic towards the natural vertebrate preys. Several species of snake include arthropods in their food. However, there is no available data on the toxicity of venom from entomophagous snakes towards their prey. We have studied the toxicity of venom from vipers of Pelias group towards crickets Gryllus assimilis. The Pelias group includes several closely related viper species inhabiting mainly the South European part of Russia, and they differ in their feeding preferences. Snakes from the Vipera renardi, Vipera lotievi, Vipera kaznakovi, and Vipera orlovi species feed on wide range of animals including insects, whereas snakes from Vipera berus and Vipera nikolskii species do not include insects in their diet. We have found that the venom from vipers that include insects in their diet possesses greater toxicity towards crickets. The greatest toxicity was observed for the venom from V. lotievi, which displays a preference for insects in its diet. Therefore, based on our data, we suggest that the viper entomophagy is not a result of behavior plasticity, but is probably determined at a genetic level.


Assuntos
Gryllidae/efeitos dos fármacos , Venenos de Víboras/toxicidade , Viperidae/fisiologia , Animais , Comportamento Alimentar , Testes de Toxicidade , Venenos de Víboras/isolamento & purificação
19.
Toxins (Basel) ; 9(9)2017 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-28878143

RESUMO

We showed recently that nerve growth factor (NGF) from cobra venom inhibited the growth of Ehrlich ascites carcinoma (EAC) inoculated subcutaneously in mice. Here, we studied the influence of anti-complementary cobra venom factor (CVF) and the non-steroidal anti-inflammatory drug ketoprofen on the antitumor NGF effect, as well as on NGF-induced changes in EAC histological patterns, the activity of lactate and succinate dehydrogenases in tumor cells and the serum level of some cytokines. NGF, CVF and ketoprofen reduced the tumor volume by approximately 72%, 68% and 30%, respectively. The antitumor effect of NGF was accompanied by an increase in the lymphocytic infiltration of the tumor tissue, the level of interleukin 1β and tumor necrosis factor α in the serum, as well as the activity of lactate and succinate dehydrogenases in tumor cells. Simultaneous administration of NGF with either CVF or ketoprofen abolished the antitumor effect and reduced all other effects of NGF, whereas NGF itself significantly decreased the antitumor action of both CVF and ketoprofen. Thus, the antitumor effect of NGF critically depended on the status of the immune system and was abolished by the disturbance of the complement system; the disturbance of the inflammatory response canceled the antitumor effect as well.


Assuntos
Antineoplásicos/uso terapêutico , Carcinoma de Ehrlich/tratamento farmacológico , Venenos Elapídicos/química , Cetoprofeno/uso terapêutico , Fator de Crescimento Neural/uso terapêutico , Animais , Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carcinoma de Ehrlich/sangue , Carcinoma de Ehrlich/patologia , Citocinas/sangue , Venenos Elapídicos/farmacologia , Venenos Elapídicos/uso terapêutico , Feminino , Glicólise/efeitos dos fármacos , Cetoprofeno/farmacologia , L-Lactato Desidrogenase/metabolismo , Camundongos , Fator de Crescimento Neural/farmacologia , Succinato Desidrogenase/metabolismo , Carga Tumoral/efeitos dos fármacos
20.
PLoS One ; 12(10): e0186206, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29023569

RESUMO

Phospholipases A2 (PLA2s) are enzymes found throughout the animal kingdom. They hydrolyze phospholipids in the sn-2 position producing lysophospholipids and unsaturated fatty acids, agents that can damage membranes. PLA2s from snake venoms have numerous toxic effects, not all of which can be explained by phospholipid hydrolysis, and each enzyme has a specific effect. We have earlier demonstrated the capability of several snake venom PLA2s with different enzymatic, cytotoxic, anticoagulant and antiproliferative properties, to decrease acetylcholine-induced currents in Lymnaea stagnalis neurons, and to compete with α-bungarotoxin for binding to nicotinic acetylcholine receptors (nAChRs) and acetylcholine binding protein. Since nAChRs are implicated in postsynaptic and presynaptic activities, in this work we probe those PLA2s known to have strong presynaptic effects, namely ß-bungarotoxin from Bungarus multicinctus and crotoxin from Crotalus durissus terrificus. We also wished to explore whether mammalian PLA2s interact with nAChRs, and have examined non-toxic PLA2 from porcine pancreas. It was found that porcine pancreatic PLA2 and presynaptic ß-bungarotoxin blocked currents mediated by nAChRs in Lymnaea neurons with IC50s of 2.5 and 4.8 µM, respectively. Crotoxin competed with radioactive α-bungarotoxin for binding to Torpedo and human α7 nAChRs and to the acetylcholine binding protein. Pancreatic PLA2 interacted similarly with these targets; moreover, it inhibited radioactive α-bungarotoxin binding to the water-soluble extracellular domain of human α9 nAChR, and blocked acetylcholine induced currents in human α9α10 nAChRs heterologously expressed in Xenopus oocytes. These and our earlier results show that all snake PLA2s, including presynaptically active crotoxin and ß-bungarotoxin, as well as mammalian pancreatic PLA2, interact with nAChRs. The data obtained suggest that this interaction may be a general property of all PLA2s, which should be proved by further experiments.


Assuntos
Neurônios/fisiologia , Pâncreas/enzimologia , Fosfolipases A2/farmacologia , Venenos de Serpentes/enzimologia , Acetilcolina/metabolismo , Animais , Bungarotoxinas/farmacologia , Crotoxina/farmacologia , Humanos , Lymnaea/citologia , Neurônios/efeitos dos fármacos , Receptores Nicotínicos/metabolismo , Suínos/metabolismo , Xenopus laevis/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA