Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Genet ; 17(2): e1009095, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33617525

RESUMO

Inferences about past processes of adaptation and speciation require a gene-scale and genome-wide understanding of the evolutionary history of diverging taxa. In this study, we use genome-wide capture of nuclear gene sequences, plus skimming of organellar sequences, to investigate the phylogenomics of monkeyflowers in Mimulus section Erythranthe (27 accessions from seven species). Taxa within Erythranthe, particularly the parapatric and putatively sister species M. lewisii (bee-pollinated) and M. cardinalis (hummingbird-pollinated), have been a model system for investigating the ecological genetics of speciation and adaptation for over five decades. Across >8000 nuclear loci, multiple methods resolve a predominant species tree in which M. cardinalis groups with other hummingbird-pollinated taxa (37% of gene trees), rather than being sister to M. lewisii (32% of gene trees). We independently corroborate a single evolution of hummingbird pollination syndrome in Erythranthe by demonstrating functional redundancy in genetic complementation tests of floral traits in hybrids; together, these analyses overturn a textbook case of pollination-syndrome convergence. Strong asymmetries in allele sharing (Patterson's D-statistic and related tests) indicate that gene tree discordance reflects ancient and recent introgression rather than incomplete lineage sorting. Consistent with abundant introgression blurring the history of divergence, low-recombination and adaptation-associated regions support the new species tree, while high-recombination regions generate phylogenetic evidence for sister status for M. lewisii and M. cardinalis. Population-level sampling of core taxa also revealed two instances of chloroplast capture, with Sierran M. lewisii and Southern Californian M. parishii each carrying organelle genomes nested within respective sympatric M. cardinalis clades. A recent organellar transfer from M. cardinalis, an outcrosser where selfish cytonuclear dynamics are more likely, may account for the unexpected cytoplasmic male sterility effects of selfer M. parishii organelles in hybrids with M. lewisii. Overall, our phylogenomic results reveal extensive reticulation throughout the evolutionary history of a classic monkeyflower radiation, suggesting that natural selection (re-)assembles and maintains species-diagnostic traits and barriers in the face of gene flow. Our findings further underline the challenges, even in reproductively isolated species, in distinguishing re-use of adaptive alleles from true convergence and emphasize the value of a phylogenomic framework for reconstructing the evolutionary genetics of adaptation and speciation.


Assuntos
Flores/anatomia & histologia , Flores/genética , Introgressão Genética , Mimulus/genética , Polinização/genética , Adaptação Fisiológica , Alelos , Animais , Abelhas , Aves , Mapeamento Cromossômico , Evolução Molecular , Fluxo Gênico , Sequenciamento de Nucleotídeos em Larga Escala , Fenótipo , Filogenia , Infertilidade das Plantas/fisiologia , Recombinação Genética/genética , Isolamento Reprodutivo
2.
Am J Bot ; 108(5): 844-856, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34036561

RESUMO

PREMISE: Across taxa, vegetative and floral traits that vary along a fast-slow life-history axis are often correlated with leaf functional traits arrayed along the leaf economics spectrum, suggesting a constrained set of adaptive trait combinations. Such broad-scale convergence may arise from genetic constraints imposed by pleiotropy (or tight linkage) within species, or from natural selection alone. Understanding the genetic basis of trait syndromes and their components is key to distinguishing these alternatives and predicting evolution in novel environments. METHODS: We used a line-cross approach and quantitative trait locus (QTL) mapping to characterize the genetic basis of twenty leaf functional/physiological, life history, and floral traits in hybrids between annualized and perennial populations of scarlet monkeyflower (Mimulus cardinalis). RESULTS: We mapped both single and multi-trait QTLs for life history, leaf function and reproductive traits, but found no evidence of genetic co-ordination across categories. A major QTL for three leaf functional traits (thickness, photosynthetic rate, and stomatal resistance) suggests that a simple shift in leaf anatomy may be key to adaptation to seasonally dry habitats. CONCLUSIONS: Our results suggest that the co-ordination of resource-acquisitive leaf physiological traits with a fast life-history and more selfing mating system results from environmental selection rather than functional or genetic constraint. Independent assortment of distinct trait modules, as well as a simple genetic basis to leaf physiological traits associated with drought escape, may facilitate adaptation to changing climates.


Assuntos
Mimulus , Mapeamento Cromossômico , Flores/genética , Mimulus/genética , Fenótipo , Folhas de Planta/genética , Locos de Características Quantitativas/genética
3.
New Phytol ; 216(4): 1034-1048, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28895167

RESUMO

Contents 1034 I. 1034 II. 1035 III. 1037 IV. 1038 V. 1042 VI. 1043 VII. 1045 References 1045 SUMMARY: As temperatures warm and precipitation patterns shift as a result of climate change, interest in the identification of tree genotypes that will thrive under more arid conditions has grown. In this review, we discuss the multiple definitions of 'drought tolerance' and the biological processes involved in drought responses. We describe the three major approaches taken in the study of genetic variation in drought responses, the advantages and shortcomings of each, and what each of these approaches has revealed about the genetic basis of adaptation to drought in conifers. Finally, we discuss how a greater knowledge of the genetics of drought tolerance may aid forest management, and provide recommendations for how future studies may overcome the limitations of past approaches. In particular, we urge a more direct focus on survival, growth and the traits that directly predict them (rather than on proxies, such as water use efficiency), combining research approaches with complementary strengths and weaknesses, and the inclusion of a wider range of taxa and life stages.


Assuntos
Adaptação Fisiológica/genética , Secas , Traqueófitas/genética , Água/fisiologia , Agricultura Florestal
4.
New Phytol ; 205(2): 907-17, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25306861

RESUMO

Quantitative trait locus (QTL) mapping is a first step toward understanding the genetic basis of adaptive evolution and may also reveal reproductive incompatibilities unique to hybrids. In plants, the shift from outcrossing to self-pollination is common, providing the opportunity for comparisons of QTL architecture among parallel evolutionary transitions. We used QTL mapping in hybrids between the bee-pollinated monkeyflower Mimulus lewisii and the closely related selfer Mimulus parishii to determine the genetic basis of divergence in floral traits and flowering time associated with mating-system evolution, and to characterize hybrid anther sterility. We found a moderately polygenic and highly directional basis for floral size evolution, suggesting adaptation from standing variation or in pursuit of a moving optimum, whereas only a few major loci accounted for substantial flowering-time divergence. Cytonuclear incompatibilities caused hybrid anther sterility, confounding estimation of reproductive organ QTLs. The genetic architecture of floral traits associated with selfing in M. parishii was primarily polygenic, as in other QTL studies of this transition, but in contrast to the previously characterized oligogenic basis of a pollinator shift in close relatives. Hybrid anther sterility appeared parallel at the molecular level to previously characterized incompatibilities, but also raised new questions about cytonuclear co-evolution in plants.


Assuntos
Flores/genética , Mimulus/genética , Polinização/genética , Locos de Características Quantitativas , Evolução Biológica , Quimera , Mapeamento Cromossômico
5.
PLoS Genet ; 6(7): e1001013, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20617172

RESUMO

Dictyostelium discoideum is a eukaryotic microbial model system for multicellular development, cell-cell signaling, and social behavior. Key models of social evolution require an understanding of genetic relationships between individuals across the genome or possibly at specific genes, but the nature of variation within D. discoideum is largely unknown. We re-sequenced 137 gene fragments in wild North American strains of D. discoideum and examined the levels and patterns of nucleotide variation in this social microbial species. We observe surprisingly low levels of nucleotide variation in D. discoideum across these strains, with a mean nucleotide diversity (pi) of 0.08%, and no strong population stratification among North American strains. We also do not find any clear relationship between nucleotide divergence between strains and levels of social dominance and kin discrimination. Kin discrimination experiments, however, show that strains collected from the same location show greater ability to distinguish self from non-self than do strains from different geographic areas. This suggests that a greater ability to recognize self versus non-self may arise among strains that are more likely to encounter each other in nature, which would lead to preferential formation of fruiting bodies with clonemates and may prevent the evolution of cheating behaviors within D. discoideum populations. Finally, despite the fact that sex has rarely been observed in this species, we document a rapid decay of linkage disequilibrium between SNPs, the presence of recombinant genotypes among natural strains, and high estimates of the population recombination parameter rho. The SNP data indicate that recombination is widespread within D. discoideum and that sex as a form of social interaction is likely to be an important aspect of the life cycle.


Assuntos
Dictyostelium/genética , Variação Genética , Sequência de Bases , Dictyostelium/classificação , Dictyostelium/crescimento & desenvolvimento , Dictyostelium/fisiologia , Evolução Molecular , Desequilíbrio de Ligação , Dados de Sequência Molecular , América do Norte , Filogenia , Polimorfismo de Nucleotídeo Único , Especificidade da Espécie
6.
Evolution ; 68(11): 3109-19, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25125144

RESUMO

Chromosomal rearrangements can contribute to the evolution of postzygotic reproductive isolation directly, by disrupting meiosis in F1 hybrids, or indirectly, by suppressing recombination among genic incompatibilities. Because direct effects of rearrangements on fertility imply fitness costs during their spread, understanding the mechanism of F1 hybrid sterility is integral to reconstructing the role(s) of rearrangements in speciation. In hybrids between monkeyflowers Mimulus cardinalis and Mimulus lewisii, rearrangements contain all quantitative trait loci (QTLs) for both premating barriers and pollen sterility, suggesting that they may have facilitated speciation in this model system. We used artificial chromosome doubling and comparative mapping to test whether heterozygous rearrangements directly cause underdominant male sterility in M. lewisii-M. cardinalis hybrids. Consistent with a direct chromosomal basis for hybrid sterility, synthetic tetraploid F1 s showed highly restored fertility (83.4% pollen fertility) relative to diploids F1 s (36.0%). Additional mapping with Mimulus parishii-M. cardinalis and M. parishii-M. lewisii hybrids demonstrated that underdominant male sterility is caused by one M. lewisii specific and one M. cardinalis specific reciprocal translocation, but that inversions had no direct effects on fertility. We discuss the importance of translocations as causes of reproductive isolation, and consider models for how underdominant rearrangements spread and fix despite intrinsic fitness costs.


Assuntos
Cromossomos de Plantas , Mimulus/classificação , Mimulus/genética , Infertilidade das Plantas , Translocação Genética , Hibridização Genética , Mimulus/fisiologia , Pólen , Locos de Características Quantitativas
7.
Evolution ; 67(9): 2547-60, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24033166

RESUMO

Chromosomal rearrangements may directly cause hybrid sterility and can facilitate speciation by preserving local adaptation in the face of gene flow. We used comparative linkage mapping with shared gene-based markers to identify potential chromosomal rearrangements between the sister monkeyflowers Mimulus lewisii and Mimulus cardinalis, which are textbook examples of ecological speciation. We then remapped quantitative trait loci (QTLs) for floral traits and flowering time (premating isolation) and hybrid sterility (postzygotic isolation). We identified three major regions of recombination suppression in the M. lewisii × M. cardinalis hybrid map compared to a relatively collinear Mimulus parishii × M. lewisii map, consistent with a reciprocal translocation and two inversions specific to M. cardinalis. These inferences were supported by targeted intraspecific mapping, which also implied a M. lewisii-specific reciprocal translocation causing chromosomal pseudo-linkage in both hybrid mapping populations. Floral QTLs mapped in this study, along with previously mapped adaptive QTLs, were clustered in putatively rearranged regions. All QTLs for male sterility, including two underdominant loci, mapped to regions of recombination suppression. We argue that chromosomal rearrangements may have played an important role in generating and consolidating barriers to gene flow as natural selection drove the dramatic ecological and morphological divergence of these species.


Assuntos
Inversão Cromossômica , Cromossomos de Plantas/genética , Mimulus/genética , Isolamento Reprodutivo , Translocação Genética , Ligação Genética , Infertilidade das Plantas/genética , Locos de Características Quantitativas , Recombinação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA