Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(34): 20814-20825, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32769208

RESUMO

Highly pathogenic avian influenza (HPAI) viruses of the H5 A/goose/Guangdong/1/96 lineage can cause severe disease in poultry and wild birds, and occasionally in humans. In recent years, H5 HPAI viruses of this lineage infecting poultry in Asia have spilled over into wild birds and spread via bird migration to countries in Europe, Africa, and North America. In 2016/2017, this spillover resulted in the largest HPAI epidemic on record in Europe and was associated with an unusually high frequency of reassortments between H5 HPAI viruses and cocirculating low-pathogenic avian influenza viruses. Here, we show that the seven main H5 reassortant viruses had various combinations of gene segments 1, 2, 3, 5, and 6. Using detailed time-resolved phylogenetic analysis, most of these gene segments likely originated from wild birds and at dates and locations that corresponded to their hosts' migratory cycles. However, some gene segments in two reassortant viruses likely originated from domestic anseriforms, either in spring 2016 in east China or in autumn 2016 in central Europe. Our results demonstrate that, in addition to domestic anseriforms in Asia, both migratory wild birds and domestic anseriforms in Europe are relevant sources of gene segments for recent reassortant H5 HPAI viruses. The ease with which these H5 HPAI viruses reassort, in combination with repeated spillovers of H5 HPAI viruses into wild birds, increases the risk of emergence of a reassortant virus that persists in wild bird populations yet remains highly pathogenic for poultry.


Assuntos
Virus da Influenza A Subtipo H5N1/genética , Influenza Aviária/epidemiologia , Vírus Reordenados/genética , Animais , Animais Selvagens/virologia , Ásia/epidemiologia , Aves/virologia , Epidemias , Europa (Continente)/epidemiologia , Virus da Influenza A Subtipo H5N1/isolamento & purificação , Influenza Aviária/virologia , Filogenia , Aves Domésticas/virologia , Vírus Reordenados/isolamento & purificação
2.
Mol Ecol ; 29(3): 466-484, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31880844

RESUMO

Urbanization affects key aspects of wildlife ecology. Dispersal in urban wildlife species may be impacted by geographical barriers but also by a species' inherent behavioural variability. There are no functional connectivity analyses using continuous individual-based sampling across an urban-rural continuum that would allow a thorough assessment of the relative importance of physical and behavioural dispersal barriers. We used 16 microsatellite loci to genotype 374 red foxes (Vulpes vulpes) from the city of Berlin and surrounding rural regions in Brandenburg in order to study genetic structure and dispersal behaviour of a mobile carnivore across the urban-rural landscape. We assessed functional connectivity by applying an individual-based landscape genetic optimization procedure. Three commonly used genetic distance measures yielded different model selection results, with only the results of an eigenvector-based multivariate analysis reasonably explaining genetic differentiation patterns. Genetic clustering methods and landscape resistance modelling supported the presence of an urban population with reduced dispersal across the city border. Artificial structures (railways, motorways) served as main dispersal corridors within the cityscape, yet urban foxes avoided densely built-up areas. We show that despite their ubiquitous presence in urban areas, their mobility and behavioural plasticity, foxes were affected in their dispersal by anthropogenic presence. Distinguishing between man-made structures and sites of human activity, rather than between natural and artificial structures, is thus essential for better understanding urban fox dispersal. This differentiation may also help to understand dispersal of other urban wildlife and to predict how behaviour can shape population genetic structure beyond physical barriers.


Assuntos
Fluxo Gênico/genética , Animais , Cidades , Ecossistema , Raposas/genética , Variação Genética/genética , Genética Populacional/métodos , Genótipo , Humanos , Repetições de Microssatélites/genética , Urbanização
3.
Virol J ; 17(1): 148, 2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-33028388

RESUMO

The first cases of African swine fever (ASF) were detected in the Lithuanian wild boar population in 2014. Since then, the disease spread slowly through the whole country, affecting both, wild boar and domestic pigs. In the other Baltic states, which both are also affected by ASF since 2014, the recent course of ASF prevalence suggests that the countries might be well under way of disease elimination. In contrast, in Lithuania the epidemic seems to be still in full progress. In the present study, we aimed to extend a previous prevalence study in Lithuania. Looking at ASF virus (ASFV) and seroprevalence estimates of wild boar in all months of 2018 and in all affected municipalities in Lithuania, the course of ASF was evaluated on a temporal and spatial scale. A non-spatial beta-binomial model was used to correct for under- or overestimation of the average prevalence estimates. Within 2018 no big differences between the prevalence estimates were seen over time. Despite of the lower sample size, highest ASFV prevalence estimates were found in dead wild boar, suggesting higher detection rates through passive surveillance than through active surveillance. Accordingly, with the maximum prevalence of 87.5% in May 2018, the ASFV prevalence estimates were very high in wild boar found dead. The number of samples originating from hunted animals (active surveillance) predominated clearly. However, the ASFV prevalence in those animals was lower with a maximum value of 2.1%, emphasizing the high value of passive surveillance. A slight increase of the seroprevalence in hunted wild boar could be seen over time. In the center of Lithuania, a cluster of municipalities with high ASFV and seroprevalence estimates was found. The results of the study indicate that ASFV is still circulating within the Lithuanian wild boar population, constituting a permanent risk of disease transmission into domestic pig holdings. However, additional, more recent data analyses are necessary to re-evaluate the course of ASF in Lithuania and thus, to be able to make a statement about the stage of the ASF epidemic in the country. This is of huge importance for Lithuania for evaluating control measures and their efficacy, but also for neighbouring countries to assess the risk of disease spread from Lithuania.


Assuntos
Febre Suína Africana/epidemiologia , Monitoramento Epidemiológico/veterinária , Sus scrofa/virologia , Febre Suína Africana/imunologia , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/imunologia , Animais , Lituânia/epidemiologia , Prevalência , Suínos/virologia
4.
BMC Vet Res ; 16(1): 155, 2020 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-32448386

RESUMO

BACKGROUND: Bovine neonatal pancytopenia (BNP) is a haemorrhagic disease of neonatal calves. BNP was first described in Germany in 2009, later on also in other European countries, and in New Zealand in 2011. The disease is characterised by spontaneous bleeding, pancytopaenia in the bone marrow, and a high case fatality ratio. The causal role of a specific bovine viral diarrhoea virus (BVDV) vaccine (PregSure®BVD, then Pfizer Animal Health, now Zoetis, Berlin, Germany) has been established over the last years, causing the production of alloantibodies in some vaccinated cattle, which in the case of pregnant cattle, are transferred to the newborn calf via the colostrum. However, striking regional differences in the incidence of the disease were observed within Germany and other countries, but as the disease was not notifiable, no representative data on the spatial distribution are available. In this study, we address the spatial distribution and incidence of BNP using the results of two representative surveys amongst cattle practitioners in Bavaria, Germany. The surveys, asking about the occurrence of BNP, were conducted in 2009 and 2010. Answers were analysed spatially by testing for clusters using space-time models. Practitioners were also asked how many cows they serve in their practice and this number was used to estimate the incidence of BNP. Furthermore, in the survey of 2010, practitioners were also asked about usage of vaccine against BVDV. RESULTS: From the results of the surveys, three clusters were identified in Bavaria. These clusters also coincided with the usage of the specific BVDV vaccine as indicated by the veterinary practices. Furthermore, the representative surveys allow the estimation of the incidence of BNP to be in the order of 4 cases per 10,000 calves at risk. CONCLUSIONS: The study is the only representative survey conducted on BNP. Despite the fact that BNP is a non-infectious disease, regional clusters were identified.


Assuntos
Doenças dos Bovinos/epidemiologia , Pancitopenia/veterinária , Vacinação/veterinária , Animais , Animais Recém-Nascidos , Doença das Mucosas por Vírus da Diarreia Viral Bovina/prevenção & controle , Bovinos , Doenças dos Bovinos/etiologia , Alemanha/epidemiologia , Incidência , Isoanticorpos , Pancitopenia/epidemiologia , Pancitopenia/imunologia , Análise Espaço-Temporal , Inquéritos e Questionários , Vacinação/estatística & dados numéricos , Vacinas Virais/administração & dosagem
5.
J Anim Ecol ; 88(11): 1812-1824, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31330575

RESUMO

Understanding the drivers underlying disease dynamics is still a major challenge in disease ecology, especially in the case of long-term disease persistence. Even though there is a strong consensus that density-dependent factors play an important role for the spread of diseases, the main drivers are still discussed and, more importantly, might differ between invasion and persistence periods. Here, we analysed long-term outbreak data of classical swine fever, an important disease in both wild boar and livestock, prevalent in the wild boar population from 1993 to 2000 in Mecklenburg-Vorpommern, Germany. We report outbreak characteristics and results from generalized linear mixed models to reveal what factors affected infection risk on both the landscape and the individual level. Spatiotemporal outbreak dynamics showed an initial wave-like spread with high incidence during the invasion period followed by a drop of incidence and an increase in seroprevalence during the persistence period. Velocity of spread increased with time during the first year of outbreak and decreased linearly afterwards, being on average 7.6 km per quarter. Landscape- and individual-level analyses of infection risk indicate contrasting seasonal patterns. During the persistence period, infection risk on the landscape level was highest during autumn and winter seasons, probably related to spatial behaviour such as increased long-distance movements and contacts induced by rutting and escaping movements. In contrast, individual-level infection risk peaked in spring, probably related to the concurrent birth season leading to higher densities, and was significantly higher in piglets than in reproductive animals. Our findings highlight that it is important to investigate both individual- and landscape-level patterns of infection risk to understand long-term persistence of wildlife diseases and to guide respective management actions. Furthermore, we highlight that exploring different temporal aggregation of the data helps to reveal important seasonal patterns, which might be masked otherwise.


Assuntos
Peste Suína Clássica , Animais , Alemanha , Estações do Ano , Estudos Soroepidemiológicos , Sus scrofa , Suínos
6.
Emerg Infect Dis ; 23(4): 633-636, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28055819

RESUMO

In November 2016, an influenza A(H5N8) outbreak caused deaths of wild birds and domestic poultry in Germany. Clade 2.3.4.4 virus was closely related to viruses detected at the Russia-Mongolia border in 2016 but had new polymerase acidic and nucleoprotein segments. These new strains may be more efficiently transmitted to and shed by birds.


Assuntos
Animais Selvagens , Surtos de Doenças/veterinária , Vírus da Influenza A Subtipo H5N8 , Influenza Aviária/virologia , Vírus Reordenados/genética , Animais , Animais Domésticos , Aves , Alemanha/epidemiologia , Influenza Aviária/epidemiologia
7.
Vet Res ; 48(1): 84, 2017 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-29183365

RESUMO

For the global pig industry, classical (CSF) and African swine fever (ASF) outbreaks are a constantly feared threat. Except for Sardinia, ASF was eradicated in Europe in the late 1990s, which led to a research focus on CSF because this disease continued to be present. However, ASF remerged in eastern Europe in 2007 and the interest in the disease, its control and epidemiology increased tremendously. The similar names and the same susceptible species suggest a similarity of the two viral diseases, a related biological behaviour and, correspondingly, similar epidemiological features. However, there are several essential differences between both diseases, which need to be considered for the design of control or preventive measures. In the present review, we aimed to collate differences and similarities of the two diseases that impact epidemiology and thus the necessary control actions. Our objective was to discuss critically, if and to which extent the current knowledge can be transferred from one disease to the other and where new findings should lead to a critical review of measures relating to the prevention, control and surveillance of ASF and CSF. Another intention was to identify research gaps, which need to be closed to increase the chances of a successful eradication of ASF and therefore for a decrease of the economic threat for pig holdings and the international trade.


Assuntos
Vírus da Febre Suína Africana/fisiologia , Febre Suína Africana , Vírus da Febre Suína Clássica/fisiologia , Peste Suína Clássica , Febre Suína Africana/epidemiologia , Febre Suína Africana/prevenção & controle , Febre Suína Africana/virologia , Animais , Peste Suína Clássica/epidemiologia , Peste Suína Clássica/prevenção & controle , Peste Suína Clássica/virologia , Suínos
8.
BMC Vet Res ; 13(1): 53, 2017 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-28202055

RESUMO

BACKGROUND: The need for wildlife health surveillance as part of disease control in wildlife, domestic animals and humans on the global level is widely recognized. However, the objectives, methods and intensity of existing wildlife health surveillance programs vary greatly among European countries, resulting in a patchwork of data that are difficult to merge and compare. This survey aimed at evaluating the need and potential for data harmonization in wildlife health in Europe. The specific objective was to collect information on methods currently used to estimate host abundance and pathogen prevalence. Questionnaires were designed to gather detailed information for three host-pathogen combinations: (1) wild boar and Aujeszky's disease virus, (2) red fox and Echinococcus multilocularis, and (3) common vole and Francisella tularensis. RESULTS: We received a total of 70 responses from 19 European countries. Regarding host abundance, hunting bags are currently the most widely accessible data source for widely distributed mid-sized and larger mammals such as red fox and wild boar, but we observed large differences in hunting strategies among countries as well as among different regions within countries. For small rodents, trapping is the method of choice, but practical applications vary among study sites. Laboratory procedures are already largely harmonized but information on the sampled animals is not systematically collected. CONCLUSIONS: The answers revealed that a large amount of information is available for the selected host-pathogen pairs and that in theory methods are already largely harmonized. However, the comparability of the data remains strongly compromised by local differences in the way, the methods are applied in practice. While these issues may easily be overcome for prevalence estimation, there is an urgent need to develop tools for the routine collection of host abundance data in a harmonized way. Wildlife health experts are encouraged to apply the harmonized APHAEA protocols in epidemiological studies in wildlife and to increase cooperation.


Assuntos
Arvicolinae/microbiologia , Equinococose/veterinária , Echinococcus multilocularis/isolamento & purificação , Raposas/parasitologia , Pseudorraiva/virologia , Tularemia/veterinária , Animais , Equinococose/parasitologia , Europa (Continente)/epidemiologia , Francisella tularensis/isolamento & purificação , Herpesvirus Suídeo 1/isolamento & purificação , Densidade Demográfica , Pseudorraiva/epidemiologia , Inquéritos e Questionários , Sus scrofa , Suínos , Doenças dos Suínos/epidemiologia , Doenças dos Suínos/virologia , Tularemia/epidemiologia , Tularemia/microbiologia
9.
J Gen Virol ; 97(3): 639-645, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26684209

RESUMO

Classical swine fever is a viral disease of pigs that carries tremendous socio-economic impact. In outbreak situations, genetic typing is carried out for the purpose of molecular epidemiology in both domestic pigs and wild boar. These analyses are usually based on harmonized partial sequences. However, for high-resolution analyses towards the understanding of genetic variability and virus evolution, full-genome sequences are more appropriate. In this study, a unique set of representative virus strains was investigated that was collected during an outbreak in French free-ranging wild boar in the Vosges-du-Nord mountains between 2003 and 2007. Comparative sequence and evolutionary analyses of the nearly full-length sequences showed only slow evolution of classical swine fever virus strains over the years and no impact of vaccination on mutation rates. However, substitution rates varied amongst protein genes; furthermore, a spatial and temporal pattern could be observed whereby two separate clusters were formed that coincided with physical barriers.


Assuntos
Vírus da Febre Suína Clássica/genética , Peste Suína Clássica/virologia , Evolução Molecular , Animais , Peste Suína Clássica/epidemiologia , Vírus da Febre Suína Clássica/classificação , Vírus da Febre Suína Clássica/isolamento & purificação , Surtos de Doenças , Europa (Continente)/epidemiologia , Genótipo , Epidemiologia Molecular , Filogenia , Sus scrofa , Suínos
10.
BMC Vet Res ; 12(1): 187, 2016 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-27601050

RESUMO

BACKGROUND: Surveillance measures can only be effective if key players in the system accept them. Acceptability, which describes the willingness of persons to contribute, is often analyzed using participatory methods. Participatory epidemiology enables the active involvement of key players in the assessment of epidemiological issues. In the present study, we used a participatory method recently developed by CIRAD (Centre de Coopération Internationale en Recherche Agronomique pour le Développement) to evaluate the functionality and acceptability of Classical Swine Fever (CSF) surveillance in wild boar in Germany, which is highly dependent on the participation of hunters. The acceptability of alternative surveillance strategies was also analyzed. By conducting focus group discussions, potential vulnerabilities in the system were detected and feasible alternative surveillance strategies identified. RESULTS: Trust in the current surveillance system is high, whereas the acceptability of the operation of the system is medium. Analysis of the acceptability of alternative surveillance strategies showed how risk-based surveillance approaches can be combined to develop strategies that have sufficient support and functionality. Furthermore, some surveillance strategies were clearly rejected by the hunters. Thus, the implementation of such strategies may be difficult. CONCLUSIONS: Participatory methods can be used to evaluate the functionality and acceptability of existing surveillance plans for CSF among hunters and to optimize plans regarding their chances of successful implementation.


Assuntos
Peste Suína Clássica/epidemiologia , Sus scrofa , Animais , Peste Suína Clássica/diagnóstico , Monitoramento Epidemiológico/veterinária , Humanos , Vigilância da População/métodos , Manejo de Espécimes/métodos , Manejo de Espécimes/veterinária , Suínos
11.
Exp Appl Acarol ; 68(3): 337-46, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26704262

RESUMO

Crimean-Congo hemorrhagic fever virus (CCHFV) is a tick-borne virus, which causes a serious illness with case-fatality rates of up to 80% in humans. CCHFV is endemic in many countries of Africa, Asia and Southeastern Europe. Next to the countries with endemic areas, the distribution of CCHFV is unknown in Southeastern Europe. As the antibody prevalence in animals is a good indicator for the presence or absence of the virus in a region, seroepidemiological studies can be used for the definition of risk areas for CCHFV. The aim of the present study was to reveal which ruminant species is best suited as indicator for the detection of a CCHFV circulation in an area. Therefore, the prevalence rates in sheep, goats and cattle in different regions of Albania and Former Yugoslav Republic of Macedonia were investigated. As there are no commercial tests available for the detection of CCHFV-specific antibodies in animals, two commercial tests for testing human sera were adapted for the investigation of sera from sheep and goats, and new in-house ELISAs were developed. The investigation of serum samples with these highly sensitive and specific assays (94-100%) resulted in an overall prevalence rate of 23% for Albania and of 49% for Former Yugoslav Republic of Macedonia. Significant lower seroprevalence rates for CCHFV were found in cattle than in small ruminants in given areas. These results indicate that small ruminants are more suitable indicator animals for CCHFV infections and should therefore be tested preferentially, when risk areas are to be identified.


Assuntos
Bovinos/virologia , Cabras/virologia , Vírus da Febre Hemorrágica da Crimeia-Congo/isolamento & purificação , Ovinos/virologia , Animais , Anticorpos Antivirais/análise , Meio Ambiente , Ensaio de Imunoadsorção Enzimática/métodos , Ensaio de Imunoadsorção Enzimática/veterinária , Monitoramento Epidemiológico , Imunofluorescência/veterinária , Febre Hemorrágica da Crimeia/epidemiologia , Febre Hemorrágica da Crimeia/veterinária , Estudos Soroepidemiológicos
13.
Sci Rep ; 14(1): 382, 2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172492

RESUMO

Targeted search for wild boar carcasses is essential for successful control of African swine fever (ASF) in wild boar populations. To examine whether landscape conditions influence the probability of finding ASF-positive carcasses, this study analyzed Global Positioning System (GPS) coordinates of Latvian wild boar carcasses and hunted wild boar, extracted from the CSF/ASF wild boar surveillance database of the European Union, and random coordinates in Latvia. Geographic information system (GIS) software was used to determine the landscape type and landscape composition of carcass detection sites and to measure distances from the carcasses to nearest waterbodies, forest edges, roads and settlements. The results of the automated measurements were validated by manually analyzing a smaller sample. Wild boar carcasses were found predominantly in forested areas and closer to waterbodies and forest edges than random GPS coordinates in Latvia. Carcasses of ASF-infected wild boar were found more frequently in transitional zones between forest and woodland shrub, and at greater distances from roads and settlements compared to ASF-negative carcasses and random points. This leads to the hypothesis, that ASF-infected animals seek shelter in quiet areas further away from human disturbance. A detailed collection of information on the environment surrounding carcass detection sites is needed to characterize predilection sites more accurately.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Animais , Febre Suína Africana/epidemiologia , Letônia/epidemiologia , Análise Espacial , Sus scrofa , Suínos
14.
EFSA J ; 22(3): e8754, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38550271

RESUMO

Between 2 December 2023 and 15 March 2024, highly pathogenic avian influenza (HPAI) A(H5) outbreaks were reported in domestic (227) and wild (414) birds across 26 countries in Europe. Compared to previous years, although still widespread, the overall number of HPAI virus detections in birds was significantly lower, among other reasons, possibly due to some level of flock immunity in previously affected wild bird species, resulting in reduced contamination of the environment, and a different composition of circulating A(H5N1) genotypes. Most HPAI outbreaks reported in poultry were primary outbreaks following the introduction of the virus by wild birds. Outside Europe, the majority of outbreaks in poultry were still clustered in North America, while the spread of A(H5) to more naïve wild bird populations on mainland Antarctica is of particular concern. For mammals, A(H5N5) was reported for the first time in Europe, while goat kids in the United States of America represented the first natural A(H5N1) infection in ruminants. Since the last report and as of 12 March 2024, five human avian influenza A(H5N1) infections, including one death, three of which were clade 2.3.2.1c viruses, have been reported by Cambodia. China has reported two human infections, including one fatal case, with avian influenza A(H5N6), four human infections with avian influenza A(H9N2) and one fatal case with co-infection of seasonal influenza A(H3N2) and avian influenza A(H10N5). The latter case was the first documented human infection with avian influenza A(H10N5). Human infections with avian influenza remain rare and no sustained human-to-human infection has been observed. The risk of infection with currently circulating avian H5 influenza viruses of clade 2.3.4.4b in Europe remains low for the general population in the EU/EEA. The risk of infection remains low to moderate for those occupationally or otherwise exposed to infected animals.

15.
EFSA J ; 22(7): e8930, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39036773

RESUMO

Between 16 March and 14 June 2024, 42 highly pathogenic avian influenza (HPAI) A(H5) virus detections were reported in domestic (15) and wild (27) birds across 13 countries in Europe. Although the overall number of detections in Europe has not been this low since the 2019-2020 epidemiological year, HPAI viruses continue to circulate at a very low level. Most detections in poultry were due to indirect contact with wild birds, but there was also secondary spread. Outside Europe, the HPAI situation intensified particularly in the USA, where a new A(H5N1) virus genotype (B3.13) has been identified in >130 dairy herds in 12 states. Infection in cattle appears to be centred on the udder, with milk from infected animals showing high viral loads and representing a new vehicle of transmission. Apart from cattle, HPAI viruses were identified in two other mammal species (alpaca and walrus) for the first time. Between 13 March and 20 June 2024, 14 new human cases with avian influenza virus infection were reported from Vietnam (one A(H5N1), one A(H9N2)), Australia (with travel history to India, one A(H5N1)), USA (three A(H5N1)), China (two A(H5N6), three A(H9N2), one A(H10N3)), India (one A(H9N2)), and Mexico (one fatal A(H5N2) case). The latter case was the first laboratory-confirmed human infection with avian influenza virus subtype A(H5N2). Most of the human cases had reported exposure to poultry, live poultry markets, or dairy cattle prior to avian influenza virus detection or onset of illness. Human infections with avian influenza viruses remain rare and no human-to-human transmission has been observed. The risk of infection with currently circulating avian A(H5) influenza viruses of clade 2.3.4.4b in Europe remains low for the general public in the EU/EEA. The risk of infection remains low-to-moderate for those occupationally or otherwise exposed to infected animals or contaminated environments.

16.
Parasitology ; 140(8): 1051-60, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23743241

RESUMO

A total of 20 749 bulk tank milk (BTM) samples was collected in November 2008 from all over Germany, corresponding to 20.9% of all German dairy herds. The BTM samples were analysed for antibodies against Fasciola hepatica using the excretory-secretory (ES) ELISA. A geospatial map was drawn to show herd prevalences per postal code area. Various spatial risk factors were tested for potential statistical associations with the ELISA results in logistic regression supported by a geographical information system (GIS). The mean seroprevalence was 23.6% and prevalences in different German federal states varied between 2.6% and 38.4%. GIS analysis revealed statistically significant positive associations between the proportion of grassed area and water bodies per postal code area and positive BTM ELISA results. This can be explained by the biology of the intermediate host, the amphibious snail Galba (Lymnea) truncatula and the pasture-borne nature of fasciolosis. The full logistic regression model had a Pseudo-R 2 of 22%, while the final model obtained by controlled stepwise model building revealed a Pseudo-R 2 of 14%, indicating that additional, unrecorded factors and random effects contributed substantially to the occurrence of positive ELISA results. Considering the high seroprevalences in some areas and the economic impact of fasciolosis, farmers and veterinarians should be strongly advised to implement effective liver fluke control programmes.


Assuntos
Anticorpos Anti-Helmínticos/imunologia , Doenças dos Bovinos/epidemiologia , Fasciola hepatica/imunologia , Fasciolíase/veterinária , Leite/parasitologia , Animais , Bovinos , Doenças dos Bovinos/parasitologia , Indústria de Laticínios , Ensaio de Imunoadsorção Enzimática/veterinária , Fasciolíase/epidemiologia , Fasciolíase/parasitologia , Feminino , Sistemas de Informação Geográfica , Alemanha/epidemiologia , Modelos Logísticos , Análise Multivariada , Prevalência , Fatores de Risco , Estudos Soroepidemiológicos , Caramujos/imunologia
17.
Epidemics ; 44: 100703, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37385853

RESUMO

The seasonality of African swine fever (ASF) outbreaks in domestic pigs differs between temperate and subtropical/tropical regions. We hypothesise that variations in the importance of wild boar-to-farm and farm-to-farm transmission routes shape these contrasting patterns, and we emphasise the implications for effective ASF control.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Doenças dos Suínos , Suínos , Animais , Febre Suína Africana/epidemiologia , Sus scrofa , Surtos de Doenças/veterinária , Surtos de Doenças/prevenção & controle , Fazendas , Doenças dos Suínos/epidemiologia
18.
EFSA J ; 21(1): e07786, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36698491

RESUMO

Between October 2021 and September 2022 Europe has suffered the most devastating highly pathogenic avian influenza (HPAI) epidemic with a total of 2,520 outbreaks in poultry, 227 outbreaks in captive birds, and 3,867 HPAI virus detections in wild birds. The unprecedent geographical extent (37 European countries affected) resulted in 50 million birds culled in affected establishments. In the current reporting period, between 10 September and 2 December 2022, 1,163 HPAI virus detections were reported in 27 European countries in poultry (398), captive (151) and wild birds (613). A decrease in HPAI virus detections in colony-breeding seabirds species and an increase in the number of detections in waterfowl has been observed. The continuous circulation of the virus in the wild reservoir has led to the frequent introduction of the virus into poultry populations. It is suspected that waterfowl might be more involved than seabirds in the incursion of HPAI virus into poultry establishments. In the coming months, the increasing infection pressure on poultry establishments might increase the risk of incursions in poultry, with potential further spread, primarily in areas with high poultry densities. The viruses detected since September 2022 (clade 2.3.4.4b) belong to eleven genotypes, three of which have circulated in Europe during the summer months, while eight represent new genotypes. HPAI viruses were also detected in wild and farmed mammal species in Europe and North America, showing genetic markers of adaptation to replication in mammals. Since the last report, two A(H5N1) detections in humans in Spain, one A(H5N1), one A(H5N6) and one A(H9N2) human infection in China as well as one A(H5) infection without NA-type result in Vietnam were reported, respectively. The risk of infection is assessed as low for the general population in the EU/EEA, and low to medium for occupationally exposed people.

19.
Emerg Microbes Infect ; 12(2): 2231561, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37381816

RESUMO

Three avian viral pathogens circulate in Germany with particular importance for animal disease surveillance due to their zoonotic potential, their impact on wild bird populations and/or poultry farms: Highly pathogenic (HP) avian influenza virus (AIV) of subtype H5 (HPAIV H5), Usutu virus (USUV), and West Nile virus (WNV). Whereas HPAIV H5 has been mainly related to epizootic outbreaks in winter, the arthropod-borne viruses USUV and WNV have been detected more frequently during summer months corresponding to peak mosquito activity. Since 2021, tendencies of a potentially year-round, i.e. enzootic, status of HPAIV in Germany have raised concerns that Orthomyxoviruses (AIV) and Flaviviruses (USUV, WNV) may not only circulate in the same region, but also at the same time and in the same avian host range. In search of a host species group suitable for a combined surveillance approach for all mentioned pathogens, we retrospectively screened and summarized case reports, mainly provided by the respective German National Reference Laboratories (NRLs) from 2006 to 2021. Our dataset revealed an overlap of reported infections among nine avian genera. We identified raptors as a particularly affected host group, as the genera Accipiter, Bubo, Buteo, Falco, and Strix represented five of the nine genera, and highlighted their role in passive surveillance. This study may provide a basis for broader, pan-European studies that could deepen our understanding of reservoir and vector species, as HPAIV, USUV, and WNV are expected to further become established and/or spread in Europe in the future and thus improved surveillance measures are of high importance.


Assuntos
Flavivirus , Influenza Aviária , Orthomyxoviridae , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Animais , Estudos Retrospectivos , Mosquitos Vetores , Flavivirus/genética , Aves , Influenza Aviária/epidemiologia
20.
EFSA J ; 21(10): e08328, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37809353

RESUMO

Between 24 June and 1 September 2023, highly pathogenic avian influenza (HPAI) A(H5) outbreaks were reported in domestic (25) and wild (482) birds across 21 countries in Europe. Most of these outbreaks appeared to be clustered along coastlines with only few HPAI virus detections inland. In poultry, all HPAI outbreaks were primary and sporadic with most of them occurring in the United Kingdom. In wild birds, colony-breeding seabirds continued to be most heavily affected, but an increasing number of HPAI virus detections in waterfowl is expected in the coming weeks. The current epidemic in wild birds has already surpassed the one of the previous epidemiological year in terms of total number of HPAI virus detections. As regards mammals, A(H5N1) virus was identified in 26 fur animal farms in Finland. Affected species included American mink, red and Arctic fox, and common raccoon dog. The most likely source of introduction was contact with gulls. Wild mammals continued to be affected worldwide, mostly red foxes and different seal species. Since the last report and as of 28 September 2023, two A(H5N1) clade 2.3.4.4b virus detections in humans have been reported by the United Kingdom, and three human infections with A(H5N6) and two with A(H9N2) were reported from China, respectively. No human infection related to the avian influenza detections in animals on fur farms in Finland or in cats in Poland have been reported, and human infections with avian influenza remain a rare event. The risk of infection with currently circulating avian H5 influenza viruses of clade 2.3.4.4b in Europe remains low for the general population in the EU/EEA. The risk of infection remains low to moderate for occupationally or otherwise exposed people to infected birds or mammals (wild or domesticated); this assessment covers different situations that depend on the level of exposure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA