RESUMO
OBJECTIVE: Exposure to repetitive head impacts (RHI) is associated with later-life cognitive symptoms and neuropathologies, including chronic traumatic encephalopathy (CTE). Cognitive decline in community cohorts is often due to multiple pathologies; however, the frequency and contributions of these pathologies to cognitive impairment in people exposed to RHI are unknown. Here, we examined the relative contributions of 13 neuropathologies to cognitive symptoms and dementia in RHI-exposed brain donors. METHODS: Neuropathologists examined brain tissue from 571 RHI-exposed donors and assessed for the presence of 13 neuropathologies, including CTE, Alzheimer disease (AD), Lewy body disease (LBD), and transactive response DNA-binding protein 43 (TDP-43) inclusions. Cognitive status was assessed by presence of dementia, Functional Activities Questionnaire, and Cognitive Difficulties Scale. Spearman rho was calculated to assess intercorrelation of pathologies. Additionally, frequencies of pathological co-occurrence were compared to a simulated distribution assuming no intercorrelation. Logistic and linear regressions tested associations between neuropathologies and dementia status and cognitive scale scores. RESULTS: The sample age range was 18-97 years (median = 65.0, interquartile range = 46.0-76.0). Of the donors, 77.2% had at least one moderate-severe neurodegenerative or cerebrovascular pathology. Stage III-IV CTE was the most common neurodegenerative disease (43.1%), followed by TDP-43 pathology, AD, and hippocampal sclerosis. Neuropathologies were intercorrelated, and there were fewer unique combinations than expected if pathologies were independent (p < 0.001). The greatest contributors to dementia were AD, neocortical LBD, hippocampal sclerosis, cerebral amyloid angiopathy, and CTE. INTERPRETATION: In this sample of RHI-exposed brain donors with wide-ranging ages, multiple neuropathologies were common and correlated. Mixed neuropathologies, including CTE, underlie cognitive impairment in contact sport athletes. ANN NEUROL 2024;95:314-324.
Assuntos
Doença de Alzheimer , Encefalopatia Traumática Crônica , Esclerose Hipocampal , Doença por Corpos de Lewy , Doenças Neurodegenerativas , Humanos , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Doenças Neurodegenerativas/patologia , Encéfalo/patologia , Doença de Alzheimer/patologia , Doença por Corpos de Lewy/patologia , Encefalopatia Traumática Crônica/patologia , Proteínas de Ligação a DNA/metabolismo , CogniçãoRESUMO
Apolipoprotein E4 (ApoE4) plays an important role responding to monomeric C-reactive protein (mCRP) via binding to CD31 leading to cerebrovascular damage and Alzheimer's disease (AD). Using phosphor-proteomic profiling, we found altered cytoskeleton proteins in the microvasculature of AD brains, including increased levels of hyperphosphorylated tau (pTau) and the actin-related protein, LIMA1. To address the hypothesis that cytoskeletal changes serve as early pathological signatures linked with CD31 in brain endothelia in ApoE4 carriers, ApoE4 knock-in mice intraperitoneal injected with mCRP revealed that mCRP increased the expressions of phosphorylated CD31 (pCD31) and LIMA1, and facilitate the binding of pCD31 to LIMA1. mCRP combined with recombinant APOE4 protein decreased interaction of CD31 and VE-Cadherin at adherens junctions (AJs), along with altered the expression of various actin cytoskeleton proteins, causing microvasculature damage. Notably, the APOE2 protein attenuated these changes. Overall, our study demonstrates that ApoE4 responds to mCRP to disrupt the endothelial AJs which link with the actin cytoskeleton and this pathway could play a key role in the barrier dysfunction leading to AD risk.
RESUMO
Tauopathy, including frontotemporal lobar dementia and Alzheimer's disease, describes a class of neurodegenerative diseases characterized by the aberrant accumulation of Tau protein due to defects in proteostasis. Upon generating and characterizing a stable transgenic zebrafish that expresses the human TAUP301L mutant in a neuron-specific manner, we found that accumulating Tau protein was efficiently cleared via an enhanced autophagy activity despite constant Tau mRNA expression; apparent tauopathy-like phenotypes were revealed only when the autophagy was genetically or chemically inhibited. We performed RNA-seq analysis, genetic knockdown, and rescue experiments with clinically relevant point mutations of valosin-containing protein (VCP), and showed that induced expression of VCP, an essential cytosolic chaperone for the protein quality system, was a key factor for Tau degradation via its facilitation of the autophagy flux. This novel function of VCP in Tau clearance was further confirmed in a tauopathy mouse model where VCP overexpression significantly decreased the level of phosphorylated and oligomeric/aggregate Tau and rescued Tau-induced cognitive behavioral phenotypes, which were reversed when the autophagy was blocked. Importantly, VCP expression in the brains of human Alzheimer's disease patients was severely downregulated, consistent with its proposed role in Tau clearance. Taken together, these results suggest that enhancing the expression and activity of VCP in a spatiotemporal manner to facilitate the autophagy pathway is a potential therapeutic approach for treating tauopathy.
Assuntos
Animais Geneticamente Modificados , Autofagia , Proteína com Valosina , Peixe-Zebra , Proteínas tau , Proteína com Valosina/metabolismo , Proteína com Valosina/genética , Autofagia/fisiologia , Animais , Humanos , Proteínas tau/metabolismo , Proteínas tau/genética , Camundongos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/genética , Modelos Animais de Doenças , Tauopatias/metabolismo , Tauopatias/patologia , Tauopatias/genética , Encéfalo/metabolismo , Encéfalo/patologia , Camundongos TransgênicosRESUMO
Chronic traumatic encephalopathy (CTE) is a neurodegenerative disease caused by repetitive head impacts (RHI) and pathologically defined as neuronal phosphorylated tau aggregates around small blood vessels and concentrated at sulcal depths. Cross-sectional studies suggest that tau inclusions follow a stereotyped pattern that begins in the neocortex in low stage disease, followed by involvement of the medial temporal lobe and subcortical regions with significant neocortical burden in high stage CTE. Here, we define a subset of brain donors with high stage CTE and with a low overall cortical burden of tau inclusions (mean semiquantitative value ≤1) and classify them as cortical-sparing CTE (CSCTE). Of 620 brain donors with pathologically diagnosed CTE, 66 (11%) met criteria for CSCTE. Compared to typical high stage CTE, those with CSCTE had a similar age at death and years of contact sports participation and were less likely to carry apolipoprotein ε4 (p < 0.05). CSCTE had less overall tau pathology severity, but a proportional increase of disease burden in medial temporal lobe and brainstem regions compared to the neocortex (p's < 0.001). CSCTE also had lower prevalence of comorbid neurodegenerative disease. Clinically, CSCTE participants were less likely to have dementia (p = 0.023) and had less severe cognitive difficulties (as reported by informants using the Functional Activities Questionnaire (FAQ); p < 0.001, meta-cognitional index T score; p = 0.002 and Cognitive Difficulties Scale (CDS); p < 0.001,) but had an earlier onset age of behavioral (p = 0.006) and Parkinsonian motor (p = 0.013) symptoms when compared to typical high stage CTE. Other comorbid tauopathies likely contributed in part to these differences: when cases with concurrent Alzheimer dementia or frontal temporal lobar degeneration with tau pathology were excluded, differences were largely retained, but only remained significant for FAQ (p = 0.042), meta-cognition index T score (p = 0.014) and age of Parkinsonian motor symptom onset (p = 0.046). Overall, CSCTE appears to be a distinct subtype of high stage CTE with relatively greater involvement of subcortical and brainstem regions and less severe cognitive symptoms.
Assuntos
Doença de Alzheimer , Encefalopatia Traumática Crônica , Doenças Neurodegenerativas , Humanos , Estudos Transversais , EncéfaloRESUMO
Mitochondrial dysfunction has been implicated in Parkinson's Disease (PD) progression; however, the mitochondrial factors underlying the development of PD symptoms remain unclear. One candidate is CR6-interacting factor1 (CRIF1), which controls translation and membrane insertion of 13 mitochondrial proteins involved in oxidative phosphorylation. Here, we found that CRIF1 mRNA and protein expression were significantly reduced in postmortem brains of elderly PD patients compared to normal controls. To evaluate the effect of Crif1 deficiency, we produced mice lacking the Crif1 gene in dopaminergic neurons (DAT-CRIF1-KO mice). From 5 weeks of age, DAT-CRIF1-KO mice began to show decreased dopamine production with progressive neuronal degeneration in the nigral area. At ~10 weeks of age, they developed PD-like behavioral deficits, including gait abnormalities, rigidity, and resting tremor. L-DOPA, a medication used to treat PD, ameliorated these defects at an early stage, although it was ineffective in older mice. Taken together, the observation that CRIF1 expression is reduced in human PD brains and deletion of CRIF1 in dopaminergic neurons leads to early-onset PD with stepwise PD progression support the conclusion that CRIF1-mediated mitochondrial function is important for the survival of dopaminergic neurons.
Assuntos
Neurônios Dopaminérgicos , Doença de Parkinson , Humanos , Camundongos , Animais , Idoso , Neurônios Dopaminérgicos/metabolismo , Doença de Parkinson/genética , Levodopa/farmacologia , Dopamina/metabolismo , Encéfalo/metabolismo , Proteínas de Ciclo Celular/genéticaRESUMO
Reactive astrogliosis is a hallmark of Alzheimer's disease (AD). However, a clinically validated neuroimaging probe to visualize the reactive astrogliosis is yet to be discovered. Here, we show that PET imaging with 11C-acetate and 18F-fluorodeoxyglucose (18F-FDG) functionally visualizes the reactive astrocyte-mediated neuronal hypometabolism in the brains with neuroinflammation and AD. To investigate the alterations of acetate and glucose metabolism in the diseased brains and their impact on the AD pathology, we adopted multifaceted approaches including microPET imaging, autoradiography, immunohistochemistry, metabolomics, and electrophysiology. Two AD rodent models, APP/PS1 and 5xFAD transgenic mice, one adenovirus-induced rat model of reactive astrogliosis, and post-mortem human brain tissues were used in this study. We further curated a proof-of-concept human study that included 11C-acetate and 18F-FDG PET imaging analyses along with neuropsychological assessments from 11 AD patients and 10 healthy control subjects. We demonstrate that reactive astrocytes excessively absorb acetate through elevated monocarboxylate transporter-1 (MCT1) in rodent models of both reactive astrogliosis and AD. The elevated acetate uptake is associated with reactive astrogliosis and boosts the aberrant astrocytic GABA synthesis when amyloid-ß is present. The excessive astrocytic GABA subsequently suppresses neuronal activity, which could lead to glucose uptake through decreased glucose transporter-3 in the diseased brains. We further demonstrate that 11C-acetate uptake was significantly increased in the entorhinal cortex, hippocampus and temporo-parietal neocortex of the AD patients compared to the healthy controls, while 18F-FDG uptake was significantly reduced in the same regions. Additionally, we discover a strong correlation between the patients' cognitive function and the PET signals of both 11C-acetate and 18F-FDG. We demonstrate the potential value of PET imaging with 11C-acetate and 18F-FDG by visualizing reactive astrogliosis and the associated neuronal glucose hypometablosim for AD patients. Our findings further suggest that the acetate-boosted reactive astrocyte-neuron interaction could contribute to the cognitive decline in AD.
Assuntos
Doença de Alzheimer , Camundongos , Humanos , Ratos , Animais , Doença de Alzheimer/metabolismo , Fluordesoxiglucose F18/metabolismo , Astrócitos/metabolismo , Radioisótopos de Carbono/metabolismo , Gliose/diagnóstico por imagem , Encéfalo/patologia , Tomografia por Emissão de Pósitrons/métodos , Ácido gama-Aminobutírico/metabolismoRESUMO
INTRODUCTION: The molecular basis of cognitive resilience (CR) among pathologically confirmed Alzheimer's disease (AD) cases is not well understood. METHODS: Abundance of 13 cell types and neuronal subtypes in brain bulk RNA-seq data from the anterior caudate, dorsolateral prefrontal cortex (DLPFC), and posterior cingulate cortex (PCC) obtained from 434 AD cases, 318 cognitively resilient AD cases, and 188 controls in the Religious Orders Study and Rush Memory and Aging Project was estimated by deconvolution. RESULTS: PVALB+ neuron abundance was negatively associated with cognitive status and tau pathology in the DLPFC and PCC (Padj < 0.001) and the most reduced neuronal subtype in AD cases compared to controls in DLPFC (Padj = 8.4 × 10-7) and PCC (Padj = 0.0015). We identified genome-wide significant association of neuron abundance with TMEM106B single nucleotide polymorphism rs13237518 in PCC (p = 6.08 × 10-12). rs13237518 was also associated with amyloid beta (p = 0.0085) and tangles (p = 0.0073). DISCUSSION: High abundance of PVALB+ neurons may be a marker of CR. TMEM106B variants may influence CR independent of AD pathology. HIGHLIGHTS: Neuron retention and a lack of astrocytosis are highly predictive of Alzheimer's disease (AD) resilience. PVALB+ GABAergic and RORB+ glutamatergic neurons are associated with cognitive status. A TMEM106B single nucleotide polymorphism is related to lower AD risk, higher neuron count, and increased AD pathology.
Assuntos
Doença de Alzheimer , Polimorfismo de Nucleotídeo Único , Humanos , Doença de Alzheimer/patologia , Doença de Alzheimer/genética , Masculino , Feminino , Idoso de 80 Anos ou mais , Idoso , Neurônios/patologia , Neurônios/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Estudo de Associação Genômica Ampla , Giro do Cíngulo/patologia , Reserva Cognitiva/fisiologia , Encéfalo/patologia , Peptídeos beta-Amiloides/metabolismo , Proteínas tau/metabolismoRESUMO
BACKGROUND: Quantifying cell-type abundance in bulk tissue RNA-sequencing enables researchers to better understand complex systems. Newer deconvolution methodologies, such as MuSiC, use cell-type signatures derived from single-cell RNA-sequencing (scRNA-seq) data to make these calculations. Single-nuclei RNA-sequencing (snRNA-seq) reference data can be used instead of scRNA-seq data for tissues such as human brain where single-cell data are difficult to obtain, but accuracy suffers due to sequencing differences between the technologies. RESULTS: We propose a modification to MuSiC entitled 'DeTREM' which compensates for sequencing differences between the cell-type signature and bulk RNA-seq datasets in order to better predict cell-type fractions. We show DeTREM to be more accurate than MuSiC in simulated and real human brain bulk RNA-sequencing datasets with various cell-type abundance estimates. We also compare DeTREM to SCDC and CIBERSORTx, two recent deconvolution methods that use scRNA-seq cell-type signatures. We find that they perform well in simulated data but produce less accurate results than DeTREM when used to deconvolute human brain data. CONCLUSION: DeTREM improves the deconvolution accuracy of MuSiC and outperforms other deconvolution methods when applied to snRNA-seq data. DeTREM enables accurate cell-type deconvolution in situations where scRNA-seq data are not available. This modification improves characterization cell-type specific effects in brain tissue and identification of cell-type abundance differences under various conditions.
Assuntos
Encéfalo , RNA , Humanos , RNA/genética , RNA Nuclear Pequeno , RNA-Seq , Sequência de BasesRESUMO
Understanding age acceleration, the discordance between biological and chronological age, in the brain can reveal mechanistic insights into normal physiology as well as elucidate pathological determinants of age-related functional decline and identify early disease changes in the context of Alzheimer's and other disorders. Histopathological whole slide images provide a wealth of pathologic data on the cellular level that can be leveraged to build deep learning models to assess age acceleration. Here, we used a collection of digitized human post-mortem hippocampal sections to develop a histological brain age estimation model. Our model predicted brain age within a mean absolute error of 5.45 ± 0.22 years, with attention weights corresponding to neuroanatomical regions vulnerable to age-related changes. We found that histopathologic brain age acceleration had significant associations with clinical and pathologic outcomes that were not found with epigenetic based measures. Our results indicate that histopathologic brain age is a powerful, independent metric for understanding factors that contribute to brain aging.
Assuntos
Envelhecimento , Encéfalo , Humanos , Pré-Escolar , Envelhecimento/patologia , Encéfalo/patologia , Epigenômica , Aceleração , Autopsia , Epigênese Genética , Metilação de DNARESUMO
Over the last 17 years, there has been a remarkable increase in scientific research concerning chronic traumatic encephalopathy (CTE). Since the publication of NINDS-NIBIB criteria for the neuropathological diagnosis of CTE in 2016, and diagnostic refinements in 2021, hundreds of contact sport athletes and others have been diagnosed at postmortem examination with CTE. CTE has been reported in amateur and professional athletes, including a bull rider, boxers, wrestlers, and American, Canadian, and Australian rules football, rugby union, rugby league, soccer, and ice hockey players. The pathology of CTE is unique, characterized by a pathognomonic lesion consisting of a perivascular accumulation of neuronal phosphorylated tau (p-tau) variably alongside astrocytic aggregates at the depths of the cortical sulci, and a distinctive molecular structural configuration of p-tau fibrils that is unlike the changes observed with aging, Alzheimer's disease, or any other tauopathy. Computational 3-D and finite element models predict the perivascular and sulcal location of p-tau pathology as these brain regions undergo the greatest mechanical deformation during head impact injury. Presently, CTE can be definitively diagnosed only by postmortem neuropathological examination; the corresponding clinical condition is known as traumatic encephalopathy syndrome (TES). Over 97% of CTE cases published have been reported in individuals with known exposure to repetitive head impacts (RHI), including concussions and nonconcussive impacts, most often experienced through participation in contact sports. While some suggest there is uncertainty whether a causal relationship exists between RHI and CTE, the preponderance of the evidence suggests a high likelihood of a causal relationship, a conclusion that is strengthened by the absence of any evidence for plausible alternative hypotheses. There is a robust dose-response relationship between CTE and years of American football play, a relationship that remains consistent even when rigorously accounting for selection bias. Furthermore, a recent study suggests that selection bias underestimates the observed risk. Here, we present the advances in the neuropathological diagnosis of CTE culminating with the development of the NINDS-NIBIB criteria, the multiple international studies that have used these criteria to report CTE in hundreds of contact sports players and others, and the evidence for a robust dose-response relationship between RHI and CTE.
Assuntos
Encefalopatia Traumática Crônica , Futebol Americano , Tauopatias , Animais , Bovinos , Humanos , Masculino , Austrália , Encéfalo/patologia , Canadá , Encefalopatia Traumática Crônica/patologia , Proteínas tau/metabolismoRESUMO
Hippocampal sclerosis (HS) is associated with advanced age as well as transactive response DNA-binding protein with 43 kDa (TDP-43) deposits. Both hippocampal sclerosis and TDP-43 proteinopathy have also been described in chronic traumatic encephalopathy (CTE), a neurodegenerative disease linked to exposure to repetitive head impacts (RHI). However, the prevalence of HS in CTE, the pattern of TDP-43 pathology, and associations of HS and TDP-43 with RHI are unknown. A group of participants with a history of RHI and CTE at autopsy (n = 401) as well as a group with HS-aging without CTE (n = 33) was examined to determine the prevalence of HS and TDP-43 inclusions in CTE and to compare the clinical and pathological features of HS and TDP-43 inclusions in CTE to HS-aging. In CTE, HS was present in 23.4%, and TDP-43 inclusions were present in 43.3% of participants. HS in CTE occurred at a relatively young age (mean 77.0 years) and was associated with a greater number of years of RHI than CTE without HS adjusting for age (p = 0.029). In CTE, TDP-43 inclusions occurred frequently in the frontal cortex and occurred both with and without limbic TDP-43. Additionally, structural equation modeling demonstrated that RHI exposure years were associated with hippocampal TDP-43 inclusions (p < 0.001) through increased CTE stage (p < 0.001). Overall, RHI and the development of CTE pathology may contribute to TDP-43 deposition and hippocampal sclerosis.
Assuntos
Encefalopatia Traumática Crônica , Esclerose Hipocampal , Doenças Neurodegenerativas , Proteinopatias TDP-43 , Humanos , Idoso , Encefalopatia Traumática Crônica/patologia , Envelhecimento , Proteinopatias TDP-43/patologia , Proteínas de Ligação a DNA/metabolismoRESUMO
Plasma-to-autopsy studies are essential for validation of blood biomarkers and understanding their relation to Alzheimer's disease (AD) pathology. Few such studies have been done on phosphorylated tau (p-tau) and those that exist have made limited or no comparison of the different p-tau variants. This study is the first to use immunoprecipitation mass spectrometry (IP-MS) to compare the accuracy of eight different plasma tau species in predicting autopsy-confirmed AD. The sample included 123 participants (AD = 69, non-AD = 54) from the Boston University Alzheimer's disease Research Center who had an available ante-mortem plasma sample and donated their brain. Plasma samples proximate to death were analyzed by targeted IP-MS for six different tryptic phosphorylated (p-tau-181, 199, 202, 205, 217, 231), and two non-phosphorylated tau (195-205, 212-221) peptides. NIA-Reagan Institute criteria were used for the neuropathological diagnosis of AD. Binary logistic regressions tested the association between each plasma peptide and autopsy-confirmed AD status. Area under the receiver operating curve (AUC) statistics were generated using predicted probabilities from the logistic regression models. Odds Ratio (OR) was used to study associations between the different plasma tau species and CERAD and Braak classifications. All tau species were increased in AD compared to non-AD, but p-tau217, p-tau205 and p-tau231 showed the highest fold-changes. Plasma p-tau217 (AUC = 89.8), p-tau231 (AUC = 83.4), and p-tau205 (AUC = 81.3) all had excellent accuracy in discriminating AD from non-AD brain donors, even among those with CDR < 1). Furthermore, p-tau217, p-tau205 and p-tau231 showed the highest ORs with both CERAD (ORp-tau217 = 15.29, ORp-tau205 = 5.05 and ORp-tau231 = 3.86) and Braak staging (ORp-tau217 = 14.29, ORp-tau205 = 5.27 and ORp-tau231 = 4.02) but presented increased levels at different amyloid and tau stages determined by neuropathological examination. Our findings support plasma p-tau217 as the most promising p-tau species for detecting AD brain pathology. Plasma p-tau231 and p-tau205 may additionally function as markers for different stages of the disease.
Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides , Proteínas tau , Autopsia , BiomarcadoresRESUMO
PURPOSE: Flourine-18-flortaucipir tau positron emission tomography (PET) was developed for the detection for Alzheimer's disease. Human imaging studies have begun to investigate its use in chronic traumatic encephalopathy (CTE). Flortaucipir-PET to autopsy correlation studies in CTE are needed for diagnostic validation. We examined the association between end-of-life flortaucipir PET and postmortem neuropathological measurements of CTE-related tau in six former American football players. METHODS: Three former National Football League players and three former college football players who were part of the DIAGNOSE CTE Research Project died and agreed to have their brains donated. The six players had flortaucipir (tau) and florbetapir (amyloid) PET prior to death. All brains from the deceased participants were neuropathologically evaluated for the presence of CTE. On average, the participants were 59.0 (SD = 9.32) years of age at time of PET. PET scans were acquired 20.33 (SD = 13.08) months before their death. Using Spearman correlation analyses, we compared flortaucipir standard uptake value ratios (SUVRs) to digital slide-based AT8 phosphorylated tau (p-tau) density in a priori selected composite cortical, composite limbic, and thalamic regions-of-interest (ROIs). RESULTS: Four brain donors had autopsy-confirmed CTE, all with high stage disease (n = 3 stage III, n = 1 stage IV). Three of these four met criteria for the clinical syndrome of CTE, known as traumatic encephalopathy syndrome (TES). Two did not have CTE at autopsy and one of these met criteria for TES. Concomitant pathology was only present in one of the non-CTE cases (Lewy body) and one of the CTE cases (motor neuron disease). There was a strong association between flortaucipir SUVRs and p-tau density in the composite cortical (ρ = 0.71) and limbic (ρ = 0.77) ROIs. Although there was a strong association in the thalamic ROI (ρ = 0.83), this is a region with known off-target binding. SUVRs were modest and CTE and non-CTE cases had overlapping SUVRs and discordant p-tau density for some regions. CONCLUSIONS: Flortaucipir-PET could be useful for detecting high stage CTE neuropathology, but specificity to CTE p-tau is uncertain. Off-target flortaucipir binding in the hippocampus and thalamus complicates interpretation of these associations. In vivo biomarkers that can detect the specific p-tau of CTE across the disease continuum are needed.
Assuntos
Doença de Alzheimer , Lesões Encefálicas Traumáticas , Encefalopatia Traumática Crônica , Futebol Americano , Humanos , Doença de Alzheimer/metabolismo , Autopsia , Encéfalo/metabolismo , Lesões Encefálicas Traumáticas/complicações , Encefalopatia Traumática Crônica/diagnóstico por imagem , Encefalopatia Traumática Crônica/etiologia , Encefalopatia Traumática Crônica/metabolismo , Morte , Tomografia por Emissão de Pósitrons , Proteínas tau/metabolismoRESUMO
Blood-based biomarkers such as tau phosphorylated at threonine 181 (phosphorylated-tau181) represent an accessible, cost-effective and scalable approach for the in vivo detection of Alzheimer's disease pathophysiology. Plasma-pathological correlation studies are needed to validate plasma phosphorylated-tau181 as an accurate and reliable biomarker of Alzheimer's disease neuropathological changes. This plasma-to-autopsy correlation study included participants from the Boston University Alzheimer's Disease Research Center who had a plasma sample analysed for phosphorylated-tau181 between 2008 and 2018 and donated their brain for neuropathological examination. Plasma phosphorelated-tau181 was measured with single molecule array technology. Of 103 participants, 62 (60.2%) had autopsy-confirmed Alzheimer's disease. Average time between blood draw and death was 5.6 years (standard deviation = 3.1 years). Multivariable analyses showed higher plasma phosphorylated-tau181 concentrations were associated with increased odds for having autopsy-confirmed Alzheimer's disease [AUC = 0.82, OR = 1.07, 95% CI = 1.03-1.11, P < 0.01; phosphorylated-tau standardized (z-transformed): OR = 2.98, 95% CI = 1.50-5.93, P < 0.01]. Higher plasma phosphorylated-tau181 levels were associated with increased odds for having a higher Braak stage (OR = 1.06, 95% CI = 1.02-1.09, P < 0.01) and more severe phosphorylated-tau across six cortical and subcortical brain regions (ORs = 1.03-1.06, P < 0.05). The association between plasma phosphorylated-tau181 and Alzheimer's disease was strongest in those who were demented at time of blood draw (OR = 1.25, 95%CI = 1.02-1.53), but an effect existed among the non-demented (OR = 1.05, 95% CI = 1.01-1.10). There was higher discrimination accuracy for Alzheimer's disease when blood draw occurred in years closer to death; however, higher plasma phosphorylated-tau181 levels were associated with Alzheimer's disease even when blood draw occurred >5 years from death. Ante-mortem plasma phosphorylated-tau181 concentrations were associated with Alzheimer's disease neuropathology and accurately differentiated brain donors with and without autopsy-confirmed Alzheimer's disease. These findings support plasma phosphorylated-tau181 as a scalable biomarker for the detection of Alzheimer's disease.
Assuntos
Doença de Alzheimer , Doenças do Sistema Nervoso , Humanos , Doença de Alzheimer/patologia , Proteínas tau , Peptídeos beta-Amiloides , Autopsia , Biomarcadores , TreoninaRESUMO
INTRODUCTION: Circular RNAs (circRNAs) exhibit selective expression in the brain and differential regulation in Alzheimer's disease (AD). To explore the role of circRNAs in AD, we investigated how circRNA expression varies between brain regions and with AD-related stress in human neuronal precursor cells (NPCs). METHODS: Ribosomal RNA-depleted hippocampus RNA-sequencing data were generated. Differentially regulated circRNAs in AD and related dementias were detected using CIRCexplorer3 and limma. circRNA results were validated using quantitative real-time PCR of cDNA from the brain and NPCs. RESULTS: We identified 48 circRNAs that were significantly associated with AD. We observed that circRNA expression differed by dementia subtype. Using NPCs, we demonstrated that exposure to oligomeric tau elicits downregulation of circRNA similar to that observed in the AD brain. DISCUSSION: Our study shows that differential expression of circRNA can vary by dementia subtype and brain region. We also demonstrated that circRNAs can be regulated by AD-linked neuronal stress independently from their cognate linear messenger RNAs (mRNAs).
Assuntos
Doença de Alzheimer , MicroRNAs , Humanos , RNA Circular/genética , RNA Circular/metabolismo , Doença de Alzheimer/genética , MicroRNAs/genética , RNA Mensageiro/metabolismo , Regulação para BaixoRESUMO
INTRODUCTION: Alzheimer's disease (AD) is heterogeneous, both clinically and neuropathologically. We investigated whether polygenic risk scores (PRSs) integrated with transcriptome profiles from AD brains can explain AD clinical heterogeneity. METHODS: We conducted co-expression network analysis and identified gene sets (modules) that were preserved in three AD transcriptome datasets and associated with AD-related neuropathological traits including neuritic plaques (NPs) and neurofibrillary tangles (NFTs). We computed the module-based PRSs (mbPRSs) for each module and tested associations with mbPRSs for cognitive test scores, cognitively defined AD subgroups, and brain imaging data. RESULTS: Of the modules significantly associated with NPs and/or NFTs, the mbPRSs from two modules (M6 and M9) showed distinct associations with language and visuospatial functioning, respectively. They matched clinical subtypes and brain atrophy at specific regions. DISCUSSION: Our findings demonstrate that polygenic profiling based on co-expressed gene sets can explain heterogeneity in AD patients, enabling genetically informed patient stratification and precision medicine in AD. HIGHLIGHTS: Co-expression gene-network analysis in Alzheimer's disease (AD) brains identified gene sets (modules) associated with AD heterogeneity. AD-associated modules were selected when genes in each module were enriched for neuritic plaques and neurofibrillary tangles. Polygenic risk scores from two selected modules were linked to the matching cognitively defined AD subgroups (language and visuospatial subgroups). Polygenic risk scores from the two modules were associated with cognitive performance in language and visuospatial domains and the associations were confirmed in regional-specific brain atrophy data.
Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/patologia , Transcriptoma , Placa Amiloide/genética , Placa Amiloide/patologia , Encéfalo/patologia , Fatores de Risco , Atrofia/patologiaRESUMO
INTRODUCTION: C-Reactive protein (CRP) and monocyte chemoattractant protein-1 (MCP-1) are both implicated in the peripheral proinflammatory cascade and blood-brain barrier (BBB) disruption. Since the blood CRP level increases Alzheimer's disease (AD) risk depending on the apolipoprotein E (APOE) genotype, we hypothesized that the blood MCP-1 level exerts different effects on the AD risk depending on the genotypes. METHODS: Using multiple regression analyses, data from the Framingham Heart Study (n = 2884) and Alzheimer's Disease Neuroimaging Initiative study (n = 231) were analyzed. RESULTS: An elevated blood MCP-1 level was associated with AD risk in major histocompatibility complex, Class II, DR beta 1 (HLA-DRB1) rs9271192-AC/CC (hazard ratio [HR] = 3.07, 95% confidence interval [CI] = 1.50-6.28, p = 0.002) and in APOE ε4 carriers (HR = 3.22, 95% CI = 1.59-6.53, p = 0.001). In contrast, among HLA-DRB1 rs9271192-AA and APOE ε4 noncarriers, blood MCP-1 levels were not associated with these phenotypes. DISCUSSION: Since HLA-DRB1 and APOE are expressed in the BBB, blood MCP-1 released in the peripheral inflammatory cascade may function as a mediator of the effects of HLA-DRB1 rs9271192-AC/CC and APOE ε4 genotypes on AD pathogenesis in the brain via the BBB pathways.
Assuntos
Doença de Alzheimer , Apolipoproteínas E , Quimiocina CCL2 , Cadeias HLA-DRB1 , Humanos , Doença de Alzheimer/sangue , Doença de Alzheimer/genética , Apolipoproteína E4/genética , Apolipoproteínas E/genética , Quimiocina CCL2/sangue , Genótipo , Cadeias HLA-DRB1/genéticaRESUMO
Primary age-related tauopathy (PART) is a neurodegenerative pathology with features distinct from but also overlapping with Alzheimer disease (AD). While both exhibit Alzheimer-type temporal lobe neurofibrillary degeneration alongside amnestic cognitive impairment, PART develops independently of amyloid-ß (Aß) plaques. The pathogenesis of PART is not known, but evidence suggests an association with genes that promote tau pathology and others that protect from Aß toxicity. Here, we performed a genetic association study in an autopsy cohort of individuals with PART (n = 647) using Braak neurofibrillary tangle stage as a quantitative trait. We found some significant associations with candidate loci associated with AD (SLC24A4, MS4A6A, HS3ST1) and progressive supranuclear palsy (MAPT and EIF2AK3). Genome-wide association analysis revealed a novel significant association with a single nucleotide polymorphism on chromosome 4 (rs56405341) in a locus containing three genes, including JADE1 which was significantly upregulated in tangle-bearing neurons by single-soma RNA-seq. Immunohistochemical studies using antisera targeting JADE1 protein revealed localization within tau aggregates in autopsy brains with four microtubule-binding domain repeats (4R) isoforms and mixed 3R/4R, but not with 3R exclusively. Co-immunoprecipitation in post-mortem human PART brain tissue revealed a specific binding of JADE1 protein to four repeat tau lacking N-terminal inserts (0N4R). Finally, knockdown of the Drosophila JADE1 homolog rhinoceros (rno) enhanced tau-induced toxicity and apoptosis in vivo in a humanized 0N4R mutant tau knock-in model, as quantified by rough eye phenotype and terminal deoxynucleotidyl transferase dUTP nick end-labeling (TUNEL) in the fly brain. Together, these findings indicate that PART has a genetic architecture that partially overlaps with AD and other tauopathies and suggests a novel role for JADE1 as a modifier of neurofibrillary degeneration.
Assuntos
Proteínas de Homeodomínio/genética , Tauopatias/genética , Tauopatias/patologia , Proteínas Supressoras de Tumor/genética , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/patologia , Animais , Estudos de Coortes , Drosophila , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo ÚnicoRESUMO
Mechanisms underlying the protective effect of apolipoprotein E (APOE) ε2 against Alzheimer disease (AD) are not well understood. We analyzed gene expression data derived from autopsied brains donated by 982 individuals including 135 APOE É2/É3 carriers. Complement pathway genes C4A and C4B were among the most significantly differentially expressed genes between É2/É3 AD cases and controls. We also identified an APOE ε2/ε3 AD-specific co-expression network enriched for astrocytes, oligodendrocytes and oligodendrocyte progenitor cells containing the genes C4A, C4B, and HSPA2. These genes were significantly associated with the ratio of phosphorylated tau at position 231 to total Tau but not with amyloid-ß 42 level, suggesting this APOE É2 related co-expression network may primarily be involved with tau pathology. HSPA2 expression was oligodendrocyte-specific and significantly associated with C4B protein. Our findings provide the first evidence of a crucial role of the complement pathway in the protective effect of APOE ε2 for AD.
Assuntos
Doença de Alzheimer , Apolipoproteína E2 , Complemento C4 , Proteínas de Choque Térmico HSP70 , Doença de Alzheimer/genética , Apolipoproteína E2/genética , Encéfalo , Complemento C4/genética , Perfilação da Expressão Gênica , Genótipo , Proteínas de Choque Térmico HSP70/genética , HumanosRESUMO
INTRODUCTION/AIMS: The amyotrophic lateral sclerosis (ALS) functional rating scale-revised (ALSFRS-R) is commonly used to track ALS disease progression; however, there are gaps in the literature regarding the extent to which the ALSFRS-R relates to underlying central nervous system (CNS) pathology. The current study explored the association between ALSFRS-R (total and subdomain) scores and postmortem neuropathology (both ALS-specific and comorbid disease). METHODS: Within our sample of 93 military veterans with autopsy-confirmed ALS, we utilized hierarchical cluster analysis (HCA) to identify discrete profiles of motor dysfunction based on ALSFRS-R subdomain scores. We examined whether emergent clusters were associated with neuropathology. Separate analyses of variance and covariance with post-hoc comparisons were performed to examine relevant cluster differences. RESULTS: Analyses revealed significant correlations between ALSFRS-R total and subdomain scores with some, but not all, neuropathological variables. The HCA illustrated three groups: Cluster 1-predominantly diffuse functional impairment; Cluster 2-spared respiratory/bulbar and impaired motor function; and Cluster 3-spared bulbar and impaired respiratory, and fine and gross motor function. Individuals in Cluster 1 (and to a lesser degree, Cluster 3) exhibited greater accumulation of ALS-specific neuropathology and less comorbid neuropathology than those in Cluster 2. DISCUSSION: These results suggest that discrete patterns of motor dysfunction based on ALSFRS-R subdomain scores are related to postmortem neuropathology. Findings support use of ALSFRS-R subdomain scores to capture the heterogeneity of clinical presentation and disease progression in ALS, and may assist researchers in identifying endophenotypes for separate assessment in clinical trials.