Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Arch Toxicol ; 98(6): 1573-1580, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38573336

RESUMO

Dietary exposure to N-nitrosamines has recently been assessed by the European Food Safety Authority (EFSA) to result in margins of exposure that are conceived to indicate concern with respect to human health risk. However, evidence from more than half a century of international research shows that N-nitroso compounds (NOC) can also be formed endogenously. In this commentary of the Senate Commission on Food Safety (SKLM) of the German Research Foundation (DFG), the complex metabolic and physiological biokinetics network of nitrate, nitrite and reactive nitrogen species is discussed with emphasis on its influence on endogenous NOC formation. Pioneering approaches to monitor endogenous NOC have been based on steady-state levels of N-nitrosodimethylamine (NDMA) in human blood and on DNA adduct levels in blood cells. Further NOC have not been considered yet to a comparable extent, although their generation from endogenous or exogenous precursors is to be expected. The evidence available to date indicates that endogenous NDMA exposure could exceed dietary exposure by about 2-3 orders of magnitude. These findings require consolidation by refined toxicokinetics and DNA adduct monitoring data to achieve a credible and comprehensive human health risk assessment.


Assuntos
Adutos de DNA , Exposição Dietética , Dimetilnitrosamina , Nitrosaminas , Humanos , Medição de Risco , Nitrosaminas/toxicidade , Nitrosaminas/farmacocinética , Exposição Dietética/efeitos adversos , Dimetilnitrosamina/toxicidade , Contaminação de Alimentos , Inocuidade dos Alimentos , Animais , Nitritos/toxicidade , Nitratos/toxicidade , Nitratos/farmacocinética , Espécies Reativas de Nitrogênio/metabolismo
2.
Arch Toxicol ; 96(6): 1905-1914, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35504979

RESUMO

Subsequent to the dietary uptake of nitrate/nitrite in combination with acetaldehyde/ethanol, combination effects resulting from the sustained endogenous exposure to nitrite and acetaldehyde may be expected. This may imply locoregional effects in the upper gastrointestinal tract as well as systemic effects, such as a potential influence on endogenous formation of N-nitroso compounds (NOC). Salivary concentrations of the individual components nitrate and nitrite and acetaldehyde are known to rise after ingestion, absorption and systemic distribution, thereby reflecting their respective plasma kinetics and parallel secretion through the salivary glands as well as the microbial/enzymatic metabolism in the oral cavity. Salivary excretion may also occur with certain drug molecules and food constituents and their metabolites. Therefore, putative combination effects in the oral cavity and the upper digestive tract may occur, but this has remained largely unexplored up to now. In this Guest Editorial, published evidence on exposure levels and biokinetics of nitrate/nitrite/NOx, NOC and acetaldehyde in the organism is reviewed and knowledge gaps concerning combination effects are identified. Research is suggested to be initiated to study the related unresolved issues.


Assuntos
Nitritos , Trato Gastrointestinal Superior , Acetaldeído/metabolismo , Humanos , Nitratos/metabolismo , Nitritos/metabolismo , Compostos Nitrosos/metabolismo , Saliva/metabolismo , Trato Gastrointestinal Superior/metabolismo
3.
Carcinogenesis ; 42(8): 1110-1118, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34115837

RESUMO

The protein O6-methylguanine-DNA methyltransferase (MGMT) is able to repair the mutagenic O6-methylguanine (O6-MeG) adduct back to guanine. In this context, it may protect against colorectal cancer formation associated with N-nitroso compounds. Such compounds may be endogenously formed by nitrosylation of amino acids, which can give rise to mutagenic O6-MeG and O6-carboxymethylguanine (O6-CMG) adducts. It is well established that O6-MeG is repaired by MGMT. However, up to now, whether O6-CMG is repaired by this enzyme remains unresolved. Therefore, the aim of the present study was to analyze the fate of both types of O6-guanine adducts in the presence and absence of MGMT activity. To this end, MGMT activity was efficiently blocked by its chemical inhibitor O6-benzylguanine in human colon epithelial cells (HCECs). Exposure of cells to azaserine (AZA) caused significantly higher levels of both O6-MeG and O6-CMG adducts in MGMT-inhibited cells, with O6-CMG as the more abundant DNA lesion. Interestingly, MGMT inhibition did not result in higher levels of AZA-induced DNA strand breaks in spite of elevated DNA adduct levels. In contrast, MGMT inhibition significantly increased DNA strand break formation after exposure to temozolomide (TMZ), a drug that exclusively generates O6-MeG adducts. In line with this finding, the viability of the cells was moderately reduced by TMZ upon MGMT inhibition, whereas no clear effect was observed in cells treated with AZA. In conclusion, our study clearly shows that O6-CMG is repaired by MGMT in HCEC, thereby suggesting that MGMT might play an important role as a tumor suppressor in diet-mediated colorectal cancer.


Assuntos
Colo/metabolismo , Guanina/análogos & derivados , Mucosa Intestinal/metabolismo , O(6)-Metilguanina-DNA Metiltransferase/metabolismo , Linhagem Celular , Colo/citologia , Dano ao DNA , Reparo do DNA , Guanina/metabolismo , Humanos , Mucosa Intestinal/citologia
4.
Arch Toxicol ; 95(7): 2507-2522, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33978766

RESUMO

The consumption of red meat is associated with an increased risk for colorectal cancer (CRC). Multiple lines of evidence suggest that heme iron as abundant constituent of red meat is responsible for its carcinogenic potential. However, the underlying mechanisms are not fully understood and particularly the role of intestinal inflammation has not been investigated. To address this important issue, we analyzed the impact of heme iron (0.25 µmol/g diet) on the intestinal microbiota, gut inflammation and colorectal tumor formation in mice. An iron-balanced diet with ferric citrate (0.25 µmol/g diet) was used as reference. 16S rRNA sequencing revealed that dietary heme reduced α-diversity and caused a persistent intestinal dysbiosis, with a continuous increase in gram-negative Proteobacteria. This was linked to chronic gut inflammation and hyperproliferation of the intestinal epithelium as attested by mini-endoscopy, histopathology and immunohistochemistry. Dietary heme triggered the infiltration of myeloid cells into colorectal mucosa with an increased level of COX-2 positive cells. Furthermore, flow cytometry-based phenotyping demonstrated an increased number of T cells and B cells in the lamina propria following heme intake, while γδ-T cells were reduced in the intraepithelial compartment. Dietary heme iron catalyzed formation of fecal N-nitroso compounds and was genotoxic in intestinal epithelial cells, yet suppressed intestinal apoptosis as evidenced by confocal microscopy and western blot analysis. Finally, a chemically induced CRC mouse model showed persistent intestinal dysbiosis, chronic gut inflammation and increased colorectal tumorigenesis following heme iron intake. Altogether, this study unveiled intestinal inflammation as important driver in heme iron-associated colorectal carcinogenesis.


Assuntos
Neoplasias Colorretais , Heme , Animais , Neoplasias Colorretais/induzido quimicamente , Neoplasias Colorretais/patologia , Dieta , Heme/toxicidade , Inflamação/patologia , Mucosa Intestinal/patologia , Ferro , Camundongos , RNA Ribossômico 16S
5.
Int J Cancer ; 146(6): 1618-1630, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-31291468

RESUMO

MALT1 is a key mediator of NF-κB signaling and a main driver of B-cell lymphomas. Remarkably, MALT1 is expressed in the majority of pancreatic ductal adenocarcinomas (PDACs) as well, but absent from normal exocrine pancreatic tissue. Following, MALT1 shows off to be a specific target in cancer cells of PDAC without affecting regular pancreatic cells. Therefore, we studied the impact of pharmacological MALT1 inhibition in pancreatic cancer and showed promising effects on tumor progression. Mepazine (Mep), a phenothiazine derivative, is a known potent MALT1 inhibitor. Newly, we described that biperiden (Bip) is a potent MALT1 inhibitor with even less pharmacological side effects. Thus, Bip is a promising drug leading to reduced proliferation and increased apoptosis in PDAC cells in vitro and in vivo. By compromising MALT1 activity, nuclear translocation of c-Rel is prevented. c-Rel is critical for NF-κB-dependent inhibition of apoptosis. Hence, off-label use of Bip or Mep represents a promising new therapeutic approach to PDAC treatment. Regularly, the Anticholinergicum Bip is used to treat neurological side effects of Phenothiazines, like extrapyramidal symptoms.


Assuntos
Biperideno/farmacologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/antagonistas & inibidores , Neoplasias Pancreáticas/tratamento farmacológico , Fenotiazinas/farmacologia , Animais , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Processos de Crescimento Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos Knockout , Modelos Moleculares , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/biossíntese , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/química , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/metabolismo , NF-kappa B/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas c-rel/metabolismo , Distribuição Aleatória , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Anal Bioanal Chem ; 412(23): 5743-5757, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32699965

RESUMO

Eicosanoids and other oxylipins play an important role in mediating inflammation as well as other biological processes. For the investigation of their biological role(s), comprehensive analytical methods are necessary, which are able to provide reliable identification and quantification of these compounds in biological matrices. Using charge-switch derivatization with AMPP (N-(4-aminomethylphenyl)pyridinium chloride) in combination with liquid chromatography ion mobility quadrupole time-of-flight mass spectrometry (LC-IM-QTOF-MS), we developed a non-target approach to analyze oxylipins in plasma, serum, and cells. The developed workflow makes use of an ion mobility resolved fragmentation to pinpoint derivatized molecules based on the cleavage of AMPP, which yields two specific fragment ions. This allows a reliable identification of known and unknown eicosanoids and other oxylipins. We characterized the workflow using 52 different oxylipins and investigated their fragmentation patterns and ion mobilities. Limits of detection ranged between 0.2 and 10.0 nM (1.0-50 pg on column), which is comparable with other state-of-the-art methods using LC triple quadrupole (QqQ) MS. Moreover, we applied this strategy to analyze oxylipins in different biologically relevant matrices, as cultured cells, human plasma, and serum. Graphical abstract.


Assuntos
Espectrometria de Mobilidade Iônica/métodos , Oxilipinas/metabolismo , Células CACO-2 , Cromatografia Líquida/métodos , Humanos
7.
Arch Toxicol ; 94(5): 1575-1584, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32232512

RESUMO

Glyphosate (N-[phosphonomethyl]-glycine) is the most widely used herbicide worldwide. Due to health concerns about glyphosate exposure, its continued use is controversially discussed. Biomonitoring is an important tool in safety evaluation and this study aimed to determine exposure to glyphosate and its metabolite AMPA, in association with food consumption data, in participants of the cross-sectional KarMeN study (Germany). Glyphosate and AMPA levels were measured in 24-h urine samples from study participants (n = 301). For safety evaluation, the intake of glyphosate and AMPA was calculated based on urinary concentrations and checked against the EU acceptable daily intake (ADI) value for glyphosate. Urinary excretion of glyphosate and/or AMPA was correlated with food consumption data. 8.3% of the participants (n = 25) exhibited quantifiable concentrations (> 0.2 µg/L) of glyphosate and/or AMPA in their urine. In 66.5% of the samples, neither glyphosate (< 0.05 µg/L) nor AMPA (< 0.09 µg/L) was detected. The remaining subjects (n = 76) showed traces of glyphosate and/or AMPA. The calculated glyphosate and/or AMPA intake was far below the ADI of glyphosate. Significant, positive associations between urinary glyphosate excretion and consumption of pulses, or urinary AMPA excretion and mushroom intake were observed. Despite the widespread use of glyphosate, the exposure of the KarMeN population to glyphosate and AMPA was found to be very low. Based on the current risk assessment of glyphosate by EFSA, such exposure levels are not expected to pose any risk to human health. The detected associations with consuming certain foods are in line with reports on glyphosate and AMPA residues in food.


Assuntos
Exposição Dietética/estatística & dados numéricos , Glicina/análogos & derivados , Herbicidas/urina , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/urina , Estudos Transversais , Dieta/estatística & dados numéricos , Monitoramento Ambiental , Alemanha , Glicina/urina , Glifosato
8.
Arch Toxicol ; 94(11): 3911-3927, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32671443

RESUMO

Data from epidemiological studies suggest that consumption of red and processed meat is a factor contributing to colorectal carcinogenesis. Red meat contains high amounts of heme, which in turn can be converted to its nitrosylated form, NO-heme, when adding nitrite-containing curing salt to meat. NO-heme might contribute to colorectal cancer formation by causing gene mutations and could thereby be responsible for the association of (processed) red meat consumption with intestinal cancer. Up to now, neither in vitro nor in vivo studies characterizing the mutagenic and cell transforming potential of NO-heme have been published due to the fact that the pure compound is not readily available. Therefore, in the present study, an already existing synthesis protocol was modified to yield, for the first time, purified NO-heme. Thereafter, newly synthesized NO-heme was chemically characterized and used in various in vitro approaches at dietary concentrations to determine whether it can lead to DNA damage and malignant cell transformation. While NO-heme led to a significant dose-dependent increase in the number of DNA strand breaks in the comet assay and was mutagenic in the HPRT assay, this compound tested negative in the Ames test and failed to induce malignant cell transformation in the BALB/c 3T3 cell transformation assay. Interestingly, the non-nitrosylated heme control showed similar effects, but was additionally able to induce malignant transformation in BALB/c 3T3 murine fibroblasts. Taken together, these results suggest that it is the heme molecule rather than the NO moiety which is involved in driving red meat-associated carcinogenesis.


Assuntos
Transformação Celular Neoplásica/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Heme/toxicidade , Neoplasias Intestinais/induzido quimicamente , Óxido Nítrico/toxicidade , Animais , Células 3T3 BALB , Células CACO-2 , Carcinogênese/induzido quimicamente , Linhagem Celular , Ensaio Cometa , Cricetinae , Heme/química , Humanos , Camundongos , Mutagênese , Mutação , Óxido Nítrico/química , Carne Vermelha/toxicidade , Fatores de Risco , Análise de Célula Única
9.
Arch Toxicol ; 94(9): 3347, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32696078

RESUMO

The author would like to thank N. Bakhiya, S. Hessel-Pras, B. Sachse, and B. Dusemund for their support in the chapter about pyrrolizidine alkaloids.

10.
Arch Toxicol ; 94(6): 1787-1877, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32542409

RESUMO

The risk assessment of chemical carcinogens is one major task in toxicology. Even though exposure has been mitigated effectively during the last decades, low levels of carcinogenic substances in food and at the workplace are still present and often not completely avoidable. The distinction between genotoxic and non-genotoxic carcinogens has traditionally been regarded as particularly relevant for risk assessment, with the assumption of the existence of no-effect concentrations (threshold levels) in case of the latter group. In contrast, genotoxic carcinogens, their metabolic precursors and DNA reactive metabolites are considered to represent risk factors at all concentrations since even one or a few DNA lesions may in principle result in mutations and, thus, increase tumour risk. Within the current document, an updated risk evaluation for genotoxic carcinogens is proposed, based on mechanistic knowledge regarding the substance (group) under investigation, and taking into account recent improvements in analytical techniques used to quantify DNA lesions and mutations as well as "omics" approaches. Furthermore, wherever possible and appropriate, special attention is given to the integration of background levels of the same or comparable DNA lesions. Within part A, fundamental considerations highlight the terms hazard and risk with respect to DNA reactivity of genotoxic agents, as compared to non-genotoxic agents. Also, current methodologies used in genetic toxicology as well as in dosimetry of exposure are described. Special focus is given on the elucidation of modes of action (MOA) and on the relation between DNA damage and cancer risk. Part B addresses specific examples of genotoxic carcinogens, including those humans are exposed to exogenously and endogenously, such as formaldehyde, acetaldehyde and the corresponding alcohols as well as some alkylating agents, ethylene oxide, and acrylamide, but also examples resulting from exogenous sources like aflatoxin B1, allylalkoxybenzenes, 2-amino-3,8-dimethylimidazo[4,5-f] quinoxaline (MeIQx), benzo[a]pyrene and pyrrolizidine alkaloids. Additionally, special attention is given to some carcinogenic metal compounds, which are considered indirect genotoxins, by accelerating mutagenicity via interactions with the cellular response to DNA damage even at low exposure conditions. Part C finally encompasses conclusions and perspectives, suggesting a refined strategy for the assessment of the carcinogenic risk associated with an exposure to genotoxic compounds and addressing research needs.


Assuntos
Carcinógenos/toxicidade , Dano ao DNA , Mutagênicos/toxicidade , Animais , Testes de Carcinogenicidade , Humanos , Testes de Mutagenicidade , Medição de Risco , Toxicogenética
12.
Arch Toxicol ; 93(8): 2321-2333, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31254001

RESUMO

Consumers are constantly exposed to chemical mixtures such as multiple residues of different pesticides via the diet. This raises questions concerning potential combination effects, especially because these substances are tested for regulatory purposes on an individual basis. With approximately 500 active substances approved as pesticides, there are too many possible combinations to be tested in standard animal experiments generally requested for regulatory purposes. Therefore, the development of in vitro tools and alternative testing strategies for the assessment of mixture effects is extremely important. As a first step in the development of such in vitro tools, we used (tri)azoles as model substances in a set of different cell lines derived from the primary target organ of these substances, the liver (human: HepaRG, rat: H4IIE). Concentrations were reconciled with measured tissue concentrations obtained from in vivo experiments to ensure comparable effect levels. The effects of the substances were subsequently analyzed by transcriptomics and metabolomics techniques and compared to data from corresponding in vivo studies. The results show that similar toxicity pathways are affected by substances and combinations, thus indicating a similar mode of action and additive effects. Two biomarkers obtained by the approach, CAR and Cyp1A1, were used for mixture toxicity modeling and confirmed the concentration-additive effects, thus supporting the selected testing strategy and raising hope for the development of in vitro methods suitable to detect combination effects and prioritize mixtures of concern for further testing.


Assuntos
Perfilação da Expressão Gênica/métodos , Fígado/efeitos dos fármacos , Metabolômica/métodos , Praguicidas/toxicidade , Testes de Toxicidade/métodos , Triazóis/toxicidade , Animais , Linhagem Celular , Células Hep G2 , Humanos , Ratos , Medição de Risco , Especificidade da Espécie
14.
Arch Toxicol ; 93(4): 1095-1139, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30756133

RESUMO

In 2012, a controversial study on the long-term toxicity of a Roundup herbicide and the glyphosate-tolerant genetically modified (GM) maize NK603 was published. The EC-funded G-TwYST research consortium tested the potential subchronic and chronic toxicity as well as the carcinogenicity of the glyphosate-resistant genetically modified maize NK603 by performing two 90-day feeding trials, one with GM maize inclusion rates of 11 and 33% and one with inclusion rates of up to 50%, as well as a 2-year feeding trial with inclusion rates of 11 and 33% in male and female Wistar Han RCC rats by taking into account OECD Guidelines for the testing of chemicals and EFSA recommendations on the safety testing of whole-food/feed in laboratory animals. In all three trials, the NK603 maize, untreated and treated once with Roundup during its cultivation, and the conventional counterpart were tested. Differences between each test group and the control group were evaluated. Equivalence was assessed by comparing the observed difference to differences between non-GM reference groups in previous studies. In case of significant differences, whether the effects were dose-related and/or accompanied by changes in related parameters including histopathological findings was evaluated. It is concluded that no adverse effects related to the feeding of the NK603 maize cultivated with or without Roundup for up to 2 years were observed. Based on the outcome of the subchronic and combined chronic toxicity/carcinogenicity studies, recommendations on the scientific justification and added value of long-term feeding trials in the GM plant risk assessment process are presented.


Assuntos
Ração Animal/normas , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/etiologia , Alimentos Geneticamente Modificados , Glicina/análogos & derivados , Herbicidas/toxicidade , Plantas Geneticamente Modificadas/efeitos dos fármacos , Zea mays , Animais , Testes de Carcinogenicidade , Resistência a Medicamentos/genética , Feminino , Glicina/toxicidade , Masculino , Plantas Geneticamente Modificadas/genética , Ratos Wistar , Testes de Toxicidade Crônica , Testes de Toxicidade Subcrônica , Zea mays/efeitos dos fármacos , Zea mays/genética , Glifosato
15.
Arch Toxicol ; 92(7): 2385-2399, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29855658

RESUMO

The genetically modified maize event MON810 expresses a Bacillus thuringiensis-derived gene, which encodes the insecticidal protein Cry1Ab to control some lepidopteran insect pests such as the European corn borer. It has been claimed that the immune system may be affected following the oral/intragastric administration of the MON810 maize in various different animal species. In the frame of the EU-funded project GRACE, two 90-day feeding trials, the so-called studies D and E, were performed to analyze the humoral and cellular immune responses of male and female Wistar Han RCC rats fed the MON810 maize. A MON810 maize variety of Monsanto was used in the study D and a MON810 maize variety of Pioneer Hi-Bred was used in the study E. The total as well as the maize protein- and Cry1Ab-serum-specific IgG, IgM, IgA and IgE levels, the proliferative activity of the lymphocytes, the phagocytic activity of the granulocytes and monocytes, the respiratory burst of the phagocytes, a phenotypic analysis of spleen, thymus and lymph node cells as well as the in vitro production of cytokines by spleen cells were analyzed. No specific Cry1Ab immune response was observed in MON810 rats, and anti-maize protein antibody responses were similar in MON810 and control rats. Single parameters were sporadically altered in rats fed the MON810 maize when compared to control rats, but these alterations are considered to be of no immunotoxicological significance.


Assuntos
Ração Animal/toxicidade , Alimentos Geneticamente Modificados/toxicidade , Imunidade Celular , Imunidade Humoral , Plantas Geneticamente Modificadas/toxicidade , Zea mays/genética , Ração Animal/normas , Animais , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/imunologia , Qualidade de Produtos para o Consumidor , Endotoxinas/imunologia , Hipersensibilidade Alimentar/imunologia , Alimentos Geneticamente Modificados/normas , Proteínas Hemolisinas/imunologia , Imunoglobulinas/sangue , Plantas Geneticamente Modificadas/imunologia , Ratos Wistar , Testes de Toxicidade Crônica
16.
Nucleic Acids Res ; 44(21): 10259-10276, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27599846

RESUMO

PhIP is an abundant heterocyclic aromatic amine (HCA) and important dietary carcinogen. Following metabolic activation, PhIP causes bulky DNA lesions at the C8-position of guanine. Although C8-PhIP-dG adducts are mutagenic, their interference with the DNA replication machinery and the elicited DNA damage response (DDR) have not yet been studied. Here, we analyzed PhIP-triggered replicative stress and elucidated the role of the apical DDR kinases ATR, ATM and DNA-PKcs in the cellular defense response. First, we demonstrate that PhIP induced C8-PhIP-dG adducts and DNA strand breaks. This stimulated ATR-CHK1 signaling, phosphorylation of histone 2AX and the formation of RPA foci. In proliferating cells, PhIP treatment increased the frequency of stalled replication forks and reduced fork speed. Inhibition of ATR in the presence of PhIP-induced DNA damage strongly promoted the formation of DNA double-strand breaks, activation of the ATM-CHK2 pathway and hyperphosphorylation of RPA. The abrogation of ATR signaling potentiated the cell death response and enhanced chromosomal aberrations after PhIP treatment, while ATM and DNA-PK inhibition had only marginal effects. These results strongly support the notion that ATR plays a key role in the defense against cancer formation induced by PhIP and related HCAs.


Assuntos
Carcinógenos/toxicidade , Instabilidade Cromossômica/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , Imidazóis/toxicidade , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Animais , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Bovinos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Quinase 1 do Ponto de Checagem/metabolismo , Aberrações Cromossômicas , Cricetinae , Adutos de DNA , Quebras de DNA de Cadeia Dupla , Receptores com Domínio Discoidina/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Fosforilação , Transdução de Sinais/efeitos dos fármacos
17.
Cell Biol Toxicol ; 33(3): 283-293, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27942899

RESUMO

Heterocyclic aromatic amines (HCAs) are compounds formed when meat or fish are cooked at high temperatures for a long time or over an open fire. To determine which pathways of toxicity are activated by HCAs, nine out of the ten HCAs known to be carcinogenic in rodents (2-amino-9H-pyrido[2,3-b]indole (AαC), 2-aminodipyrido[1,2-a:3',2-d]imidazole (Glu-P-2), 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), 2-amino-3-methyl-9H-pyrido[2,3-b]indole (MeAαC), 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx), 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), 3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1), and 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2)) were tested in the estrogen receptor α (ERα), androgen receptor (AR), glucocorticoid receptor (GR), peroxisome proliferator-activated receptor γ2 (PPARγ2), polycyclic aromatic hydrocarbons (PAH), Nrf2, and p53 CALUX® reporter gene assays. Trp-P-1 was the only HCA that led to a positive response in the ERα, PPARγ2, and Nrf2 CALUX® assays. In the PAH CALUX® assay, Trp-P-2, MeAαC, and AαC induced luciferase activity to a greater extent than MeIQ and PhIP. In the p53 CALUX® assay without a coupled metabolic activation, only Trp-P-1 and Trp-P-2 enhanced luciferase expression; when a metabolic activation step was coupled to the p53 CALUX® assay, Trp-P-1, Glu-P-2, MeIQ, MeIQx, and PhIP induced a positive response. No HCA was positive in the AR and GR CALUX® assays. Taken together, the results obtained show that the battery of CALUX® assays performed in the present study can successfully be used to screen for molecular cell targets of carcinogenic compounds such as HCAs.


Assuntos
Aminas/toxicidade , Carcinógenos/toxicidade , Genes Reporter/genética , Compostos Heterocíclicos/toxicidade , Carne/análise , Animais , Bioensaio/métodos , Camundongos , Ratos
18.
Arch Toxicol ; 91(4): 1977-2006, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27730258

RESUMO

The data of four 90-day feeding trials and a 1-year feeding trial with the genetically modified (GM) maize MON810 in Wistar Han RCC rats performed in the frame of EU-funded project GRACE were analysed. Firstly, the data obtained from the groups having been fed the non-GM maize diets were combined to establish a historical control data set for Wistar Han RCC rats at the animal housing facility (Slovak Medical University, Bratislava, Slovakia). The variability of all parameters is described, and the reference values and ranges have been derived. Secondly, the consistency of statistically significant differences found in the five studies was analysed. In order to do so, the body weight development, organ weight, haematology and clinical biochemistry data were compared between the studies. Based on the historical control data, equivalence ranges for these parameters were defined, and the values measured in the GM maize-fed groups were compared with these equivalence ranges. Thirdly, the (statistical) power of these feeding studies with whole food/feed was assessed and detectable toxicologically relevant group differences were derived. Linear mixed models (LMM) were applied, and standardized effect sizes (SES) were calculated in order to compare different parameters as well as to provide an overall picture of group and study differences at a glance. The comparison of the five feeding trials showed a clear study effect in the control data. It also showed inconsistency both in the frequency of statistically significant differences and in the difference values between control and test groups.


Assuntos
Alimentos Geneticamente Modificados/toxicidade , Plantas Geneticamente Modificadas/toxicidade , Zea mays/genética , Ração Animal , Animais , Peso Corporal , Feminino , Modelos Lineares , Masculino , Tamanho do Órgão , Ratos , Ratos Wistar , Fatores de Tempo , Testes de Toxicidade/métodos
19.
Arch Toxicol ; 90(3): 731-51, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25724152

RESUMO

In this paper, we compare the traditional ANOVA approach to analysing data from 90-day toxicity studies with a more modern LMM approach, and we investigate the use of standardized effect sizes. The LMM approach is used to analyse weight or feed consumption data. When compared to the week-by-week ANOVA with multiple test results per week, this approach results in only one statement on differences in weight development between groups. Standardized effect sizes are calculated for the endpoints: weight, relative organ weights, haematology and clinical biochemistry. The endpoints are standardized, allowing different endpoints of the same study to be compared and providing an overall picture of group differences at a glance. Furthermore, in terms of standardized effect sizes, statistical significance and biological relevance are displayed simultaneously in a graph.


Assuntos
Modelos Lineares , Testes de Toxicidade/métodos , Testes de Toxicidade/normas , Toxicologia/estatística & dados numéricos , Análise de Variância , Animais , Peso Corporal , Masculino , Tamanho do Órgão , Plantas Geneticamente Modificadas , Ratos , Testes de Toxicidade/estatística & dados numéricos , Toxicologia/normas , Zea mays
20.
Arch Toxicol ; 90(5): 1093-102, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26070365

RESUMO

Colorectal cancer is one of the most frequent cancers in Western countries. Chronic intestinal diseases such as Crohn's disease and ulcerative colitis, in which the intestinal barrier is massively disturbed, significantly raise the risk of developing a colorectal tumour. 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) is a genotoxic heterocyclic aromatic amine that is formed after strongly heating fish and meat. In this study, the hypothesis that PhIP uptake in the gut is increased during chronic colitis was tested. Chronic colitis was induced by oral administration of dextran sulphate sodium (DSS) to Fischer 344 rats. The transport of PhIP in eight different rat intestinal segments was examined in Ussing chambers. The tissues were incubated with 10 µM PhIP for 90 min, and the concentration of PhIP was determined in the mucosal and serosal compartments of the Ussing chambers as well as in the clamped tissues by LC-MS. Although chronic colitis was clearly induced in the rats, no differences in the intestinal transport of PhIP were observed between control and DSS-treated animals. The hypothesis that in the course of chronic colitis more PhIP is taken up by the intestinal epithelium, thereby increasing the risk of developing colorectal cancer, could not be confirmed in the present report.


Assuntos
Carcinógenos/metabolismo , Colite/metabolismo , Sulfato de Dextrana , Imidazóis/metabolismo , Absorção Intestinal , Mucosa Intestinal/metabolismo , Animais , Carcinógenos/toxicidade , Cromatografia Líquida , Doença Crônica , Colite/induzido quimicamente , Colite/patologia , Neoplasias do Colo/induzido quimicamente , Neoplasias do Colo/metabolismo , Modelos Animais de Doenças , Imidazóis/toxicidade , Intestinos/patologia , Cinética , Masculino , Ratos Endogâmicos F344 , Fatores de Risco , Espectrometria de Massas por Ionização por Electrospray
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA