RESUMO
AIMS: To investigate the seroconversion following first and second COVID-19 vaccination in people with type 1 and type 2 diabetes in relation to glycaemic control prior to vaccination and to analyse the response in comparison to individuals without diabetes. MATERIALS AND METHODS: This prospective, multicentre cohort study analysed people with type 1 and type 2 diabetes and a glycated haemoglobin level ≤58 mmol/mol (7.5%) or >58 mmol/mol (7.5%), respectively, and healthy controls. Roche's Elecsys anti-SARS-CoV-2 S immunoassay targeting the receptor-binding domain was used to quantify anti-spike protein antibodies 7 to 14 days after the first and 14 to 21 days after the second vaccination. RESULTS: A total of 86 healthy controls were enrolled in the study, as well as 161 participants with diabetes, of whom 150 (75 with type 1 diabetes and 75 with type 2 diabetes) were eligible for the analysis. After the first vaccination, only 52.7% of participants in the type 1 diabetes group and 48.0% of those in the type 2 diabetes group showed antibody levels above the cut-off for positivity. Antibody levels after the second vaccination were similar in participants with type 1 diabetes, participants with type 2 diabetes and healthy controls after adjusting for age, sex and multiple testing (P > 0.05). Age (r = -0.45, P < 0.001) and glomerular filtration rate (r = 0.28, P = 0.001) were significantly associated with antibody response. CONCLUSIONS: Anti-SARS-CoV-2 S receptor-binding domain antibody levels after the second vaccination were comparable in healthy controls and in participants with type 1 and type 2 diabetes, irrespective of glycaemic control. Age and renal function correlated significantly with the extent of antibody levels.
Assuntos
COVID-19 , Diabetes Mellitus Tipo 2 , COVID-19/prevenção & controle , Vacinas contra COVID-19/uso terapêutico , Estudos de Coortes , Diabetes Mellitus Tipo 2/complicações , Humanos , Imunidade Humoral , Estudos Prospectivos , VacinaçãoRESUMO
Nitrification, the oxidation of ammonia via nitrite to nitrate, has always been considered to be catalyzed by the concerted activity of ammonia- and nitrite-oxidizing microorganisms. Only recently, complete ammonia oxidizers ("comammox"), which oxidize ammonia to nitrate on their own, were identified in the bacterial genus Nitrospira, previously assumed to contain only canonical nitrite oxidizers. Nitrospira are widespread in nature, but for assessments of the distribution and functional importance of comammox Nitrospira in ecosystems, cultivation-independent tools to distinguish comammox from strictly nitrite-oxidizing Nitrospira are required. Here we developed new PCR primer sets that specifically target the amoA genes coding for subunit A of the distinct ammonia monooxygenase of comammox Nitrospira. While existing primers capture only a fraction of the known comammox amoA diversity, the new primer sets cover as much as 95% of the comammox amoA clade A and 92% of the clade B sequences in a reference database containing 326 comammox amoA genes with sequence information at the primer binding sites. Application of the primers to 13 samples from engineered systems (a groundwater well, drinking water treatment and wastewater treatment plants) and other habitats (rice paddy and forest soils, rice rhizosphere, brackish lake sediment and freshwater biofilm) detected comammox Nitrospira in all samples and revealed a considerable diversity of comammox in most habitats. Excellent primer specificity for comammox amoA was achieved by avoiding the use of highly degenerate primer preparations and by using equimolar mixtures of oligonucleotides that match existing comammox amoA genes. Quantitative PCR with these equimolar primer mixtures was highly sensitive and specific, and enabled the efficient quantification of clade A and clade B comammox amoA gene copy numbers in environmental samples. The measured relative abundances of comammox Nitrospira, compared to canonical ammonia oxidizers, were highly variable across environments. The new comammox amoA-targeted primers enable more encompassing future studies of nitrifying microorganisms in diverse habitats. For example, they may be used to monitor the population dynamics of uncultured comammox organisms under changing environmental conditions and in response to altered treatments in engineered and agricultural ecosystems.
RESUMO
Mucispirillum schaedleri is an abundant inhabitant of the intestinal mucus layer of rodents and other animals and has been suggested to be a pathobiont, a commensal that plays a role in disease. In order to gain insights into its lifestyle, we analyzed the genome and transcriptome of M. schaedleri ASF 457 and performed physiological experiments to test traits predicted by its genome. Although described as a mucus inhabitant, M. schaedleri has limited capacity for degrading host-derived mucosal glycans and other complex polysaccharides. Additionally, M. schaedleri reduces nitrate and expresses systems for scavenging oxygen and reactive oxygen species in vivo, which may account for its localization close to the mucosal tissue and expansion during inflammation. Also of note, M. schaedleri harbors a type VI secretion system and putative effector proteins and can modify gene expression in mucosal tissue, suggesting intimate interactions with its host and a possible role in inflammation. The M. schaedleri genome has been shaped by extensive horizontal gene transfer, primarily from intestinal Epsilon- and Deltaproteobacteria, indicating that horizontal gene transfer has played a key role in defining its niche in the gut ecosystem. IMPORTANCE Shifts in gut microbiota composition have been associated with intestinal inflammation, but it remains unclear whether inflammation-associated bacteria are commensal or detrimental to their host. Here, we studied the lifestyle of the gut bacterium Mucispirillum schaedleri, which is associated with inflammation in widely used mouse models. We found that M. schaedleri has specialized systems to handle oxidative stress during inflammation. Additionally, it expresses secretion systems and effector proteins and can modify the mucosal gene expression of its host. This suggests that M. schaedleri undergoes intimate interactions with its host and may play a role in inflammation. The insights presented here aid our understanding of how commensal gut bacteria may be involved in altering susceptibility to disease.