Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 592(7856): 784-788, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33883741

RESUMO

It has recently been shown that in anaerobic microorganisms the tricarboxylic acid (TCA) cycle, including the seemingly irreversible citrate synthase reaction, can be reversed and used for autotrophic fixation of carbon1,2. This reversed oxidative TCA cycle requires ferredoxin-dependent 2-oxoglutarate synthase instead of the NAD-dependent dehydrogenase as well as extremely high levels of citrate synthase (more than 7% of the proteins in the cell). In this pathway, citrate synthase replaces ATP-citrate lyase of the reductive TCA cycle, which leads to the spending of one ATP-equivalent less per one turn of the cycle. Here we show, using the thermophilic sulfur-reducing deltaproteobacterium Hippea maritima, that this route is driven by high partial pressures of CO2. These high partial pressures are especially important for the removal of the product acetyl coenzyme A (acetyl-CoA) through reductive carboxylation to pyruvate, which is catalysed by pyruvate synthase. The reversed oxidative TCA cycle may have been functioning in autotrophic CO2 fixation in a primordial atmosphere that is assumed to have been rich in CO2.


Assuntos
Processos Autotróficos , Dióxido de Carbono/química , Ciclo do Ácido Cítrico , Deltaproteobacteria/enzimologia , ATP Citrato (pro-S)-Liase/metabolismo , Acetilcoenzima A/metabolismo , Proteínas de Bactérias/metabolismo , Carbono/metabolismo , Deltaproteobacteria/crescimento & desenvolvimento , Pressão Parcial , Ácido Pirúvico/metabolismo
2.
Mol Microbiol ; 116(3): 841-860, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34164854

RESUMO

Helicobacter pylori displays a worldwide infection rate of about 50%. The Gram-negative bacterium is the main reason for gastric cancer and other severe diseases. Despite considerable knowledge about the metabolic inventory of H. pylori, carbon fluxes through the citrate cycle (TCA cycle) remained enigmatic. In this study, different 13 C-labeled substrates were supplied as carbon sources to H. pylori during microaerophilic growth in a complex medium. After growth, 13 C-excess and 13 C-distribution were determined in multiple metabolites using GC-MS analysis. [U-13 C6 ]Glucose was efficiently converted into glyceraldehyde but only less into TCA cycle-related metabolites. In contrast, [U-13 C5 ]glutamate, [U-13 C4 ]succinate, and [U-13 C4 ]aspartate were incorporated at high levels into intermediates of the TCA cycle. The comparative analysis of the 13 C-distributions indicated an adaptive TCA cycle fully operating in the closed oxidative direction with rapid equilibrium fluxes between oxaloacetate-succinate and α-ketoglutarate-citrate. 13 C-Profiles of the four-carbon intermediates in the TCA cycle, especially of malate, together with the observation of an isocitrate lyase activity by in vitro assays, suggested carbon fluxes via a glyoxylate bypass. In conjunction with the lack of enzymes for anaplerotic CO2 fixation, the glyoxylate bypass could be relevant to fill up the TCA cycle with carbon atoms derived from acetyl-CoA.


Assuntos
Aminoácidos/metabolismo , Ciclo do Carbono , Carbono/metabolismo , Ácido Cítrico/metabolismo , Glucose/metabolismo , Helicobacter pylori/metabolismo , Acetilcoenzima A/metabolismo , Ácido Aspártico/metabolismo , Metabolismo dos Carboidratos , Ciclo do Ácido Cítrico , Ácido Glutâmico/metabolismo , Gliceraldeído/metabolismo , Glioxilatos/metabolismo , Infecções por Helicobacter/microbiologia , Humanos , Malatos/metabolismo , Redes e Vias Metabólicas , Ácido Succínico/metabolismo
3.
Bio Protoc ; 12(6): e4364, 2022 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-35434198

RESUMO

Different pathways for autotrophic CO2 fixation can be recognized by the presence of genes for their specific key enzymes. On this basis, (meta)genomic, (meta)transcriptomic, or (meta)proteomic analysis enables the identification of the role of an organism or a distinct pathway in primary production. However, the recently discovered variant of the reductive tricarboxylic acid (rTCA) cycle, the reverse oxidative tricarboxylic acid (roTCA) cycle, lacks unique enzymes, a feature that makes it cryptic for bioinformatics analysis. This pathway is a reversal of the widespread tricarboxylic acid (TCA) cycle. The functioning of the roTCA cycle requires unusually high activity of citrate synthase, the enzyme responsible for citrate cleavage, as well as elevated CO2 partial pressures. Here, we present a detailed description of the protocol we used for the identification of the roTCA cycle in members of Desulfurellaceae. First, we describe the anaerobic cultivation of Desulfurellaceae at different CO2 concentrations with a method that can be adapted to the cultivation of other anaerobes. Then, we explain how to measure activities of enzymes responsible for citrate cleavage, malate dehydrogenase reaction, and the crucial carboxylation step of the cycle catalyzed by pyruvate synthase in cell extracts. In conclusion, we describe stable isotope experiments that allow tracking of the roTCA cycle in vivo, through the position-specific incorporation of carbon-13 into amino acids. The label is provided to the organism as 13CO2 or [1-13C]glutamate. The same key methodology can be used for the reliable evaluation of the functioning of the roTCA cycle in any organism under study. This pathway is likely to participate, completely unseen, in the metabolism of various microorganisms. Graphic abstract.

4.
Heliyon ; 3(7): e00368, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28795165

RESUMO

We report a one-pot formation of 2,4-diolefinic or 2,4,6-triolefinic monocarboxylic acids, R-(CH[bond, double bond]CH)2or3-COOH, by decarboxylative condensation of an optionally α,ß-unsaturated aldehyde with glutaconic acid, HOOC-CH2-CH[bond, double bond]CH-COOH as straight chain C4-extender. The reaction is broadly applicable to saturated and unsaturated aldehydes and opens up a simple gateway to valuable organic products and reactive intermediates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA