RESUMO
The environmental bacterium Klebsiella oxytoca displays an alarming increase of antibiotic-resistant strains that frequently cause outbreaks in intensive care units. Due to its prevalence in the environment and opportunistic presence in humans, molecular surveillance (including resistance marker screening) and high-resolution cluster analysis are of high relevance. Furthermore, K. oxytoca previously described in studies is rather a species complex (KoSC) than a single species comprising at least six closely related species that are not easily differentiated by standard typing methods. To reach a discriminatory power high enough to identify and resolve clusters within these species, whole genome sequencing is necessary. The resolution is achievable with core genome multilocus sequence typing (cgMLST) extending typing of a few housekeeping genes to thousands of core genome genes. CgMLST is highly standardized and provides a nomenclature enabling cross laboratory reproducibility and data exchange for routine diagnostics. Here, we established a cgMLST scheme not only capable of resolving the KoSC species but also producing reliable and consistent results for published outbreaks. Our cgMLST scheme consists of 2,536 core genome and 2,693 accessory genome targets, with a percentage of good cgMLST targets of 98.31% in 880 KoSC genomes downloaded from the National Center for Biotechnology Information (NCBI). We also validated resistance markers against known resistance gene patterns and successfully linked genetic results to phenotypically confirmed toxic strains carrying the til gene cluster. In conclusion, our novel cgMLST enables highly reproducible typing of four different clinically relevant species of the KoSC and thus facilitates molecular surveillance and cluster investigations.
Assuntos
Genoma Bacteriano , Klebsiella oxytoca , Tipagem de Sequências Multilocus , Tipagem de Sequências Multilocus/métodos , Klebsiella oxytoca/genética , Klebsiella oxytoca/classificação , Klebsiella oxytoca/isolamento & purificação , Humanos , Genoma Bacteriano/genética , Filogenia , Infecções por Klebsiella/microbiologia , Sequenciamento Completo do Genoma , Técnicas de Tipagem Bacteriana/métodos , Genes Essenciais/genética , Reprodutibilidade dos TestesRESUMO
Nanopore sequencing has shown the potential to democratize genomic pathogen surveillance due to its ease of use and low entry cost. However, recent genotyping studies showed discrepant results compared to gold-standard short-read sequencing. Furthermore, although essential for widespread application, the reproducibility of nanopore-only genotyping remains largely unresolved. In our multicenter performance study involving five laboratories, four public health-relevant bacterial species were sequenced with the latest R10.4.1 flow cells and V14 chemistry. Core genome MLST analysis of over 500 data sets revealed highly strain-specific typing errors in all species in each laboratory. Investigation of the methylation-related errors revealed consistent DNA motifs at error-prone sites across participants at read level. Depending on the frequency of incorrect target reads, this either leads to correct or incorrect typing, whereby only minimal frequency deviations can randomly determine the final result. PCR preamplification, recent basecalling model updates and an optimized polishing strategy notably diminished the non-reproducible typing. Our study highlights the potential for new errors to appear with each newly sequenced strain and lays the foundation for computational approaches to reduce such typing errors. In conclusion, our multicenter study shows the necessity for a new validation concept for nanopore sequencing-based, standardized bacterial typing, where single nucleotide accuracy is critical.
Assuntos
Bactérias , Técnicas de Genotipagem , Sequenciamento por Nanoporos , Sequenciamento por Nanoporos/métodos , Reprodutibilidade dos Testes , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificação , Humanos , Técnicas de Genotipagem/métodos , Genótipo , Tipagem de Sequências Multilocus/métodos , DNA Bacteriano/genética , Genoma Bacteriano/genética , Análise de Sequência de DNA/métodosRESUMO
BACKGROUND: Melioidosis is a serious bacterial infection caused by Burkholderia pseudomallei, a gram-negative bacterium commonly found in soil and water. It can affect both humans and animals, and is endemic in regions such as Southeast Asia and Northern Australia. In recent years, there have been reports of an emergence of human melioidosis in other areas, including New Caledonia. RESULTS: During standard laboratory analysis in New Caledonia in 2021, a strain of B. pseudomallei was isolated from a goat. The strain was characterized using both MLST and WGS techniques and was found to cluster with previously described local human strains from the area. In parallel, several serological tests (CFT, ELISA, Luminex (Hcp1, GroEL, BPSS1840), arrays assay and a latex agglutination test) were performed on animals from the farm where the goat originated, and/or from three other neighboring farms. Using two commercial ELISA kits, seropositive animals were found only on the farm where the infected goat originated and tests based on recombinant proteins confirmed the usefulness of the Hcp1 protein for the diagnosis of melioidosis in animals. CONCLUSIONS: Despite the regular reports of human cases, this is the first confirmed case of melioidosis in an animal in New Caledonia. These results confirm the presence of the bacterium in the region and highlight the importance of vigilance for both animal and human health. It is critical that all health partners, including breeders, veterinarians, and biologists, work together to monitor and prevent the spread of the disease.
Assuntos
Burkholderia pseudomallei , Doenças das Cabras , Melioidose , Humanos , Animais , Burkholderia pseudomallei/genética , Melioidose/diagnóstico , Melioidose/epidemiologia , Melioidose/veterinária , Tipagem de Sequências Multilocus/veterinária , Cabras , Nova Caledônia/epidemiologiaRESUMO
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has revolutionized diagnostics in culture-based microbiology. Commonly used MALDI-TOF MS systems in clinical microbiology laboratories are MALDI Biotyper (Bruker Daltonics) and Vitek MS (bioMérieux), but recently the new EXS2600 (Zybio) has been launched. This study aimed to evaluate the performance of the three devices by comparing the results to 16S rRNA gene sequencing. A set of 356 previously collected difficult-to-identify bacteria was tested in parallel with the three systems. Only the direct smear method and simple formic acid extraction were applied. Valid results were achieved for 98.6%, 94.4%, and 93.3% of all isolates by MALDI Biotyper, EXS2600, and Vitek MS, respectively. Of all valid results, agreement with sequencing data was achieved in 98.9%, 98.5%, and 99.7% by MALDI Biotyper, EXS2600, and Vitek MS, respectively. Considering only the isolates with valid measurements at the single-species level, misidentification rates were 0%, 2.6%, and 1.1% for MALDI Biotyper, EXS2600, and Vitek MS, respectively. Apart from minor performance differences, our data demonstrate that the three systems provide comparable results and are suitable for use in medical diagnostic laboratories.
Assuntos
Bactérias , Serviços de Laboratório Clínico , Humanos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , RNA Ribossômico 16S/genética , Genes de RNArRESUMO
Burkholderia mallei, the causative agent of glanders, is a clonal descendant of Burkholderia pseudomallei, the causative agent of melioidosis, which has lost its environmental reservoir and has a restricted host range. Despite limitations in terms of sensitivity and specificity, complement fixation is still the official diagnostic test for glanders. Therefore, new tools are needed for diagnostics and to study the B. mallei epidemiology. We recently developed a highly sensitive serodiagnostic microarray test for human melioidosis based on the multiplex detection of B. pseudomallei proteins. In this study, we modified our array tests by using anti-horse IgG conjugate and tested sera from B. mallei-infected horses (n = 30), negative controls (n = 39), and horses infected with other pathogens (n = 14). Our array results show a sensitivity of 96.7% (confidence interval [CI] 85.5 to 99.6%) and a specificity of 100.0% (CI, 95.4 to 100.0%). The reactivity pattern of the positive sera on our array test allowed us to identify a set of 12 highly reactive proteins of interest for glanders diagnosis. The B. mallei variants of the three best protein candidates were selected for the development of a novel dipstick assay. Our point-of-care test detected glanders cases in less than 15 min with a sensitivity of 90.0% (CI, 75.7 to 97.1%) and a specificity of 100.0% (CI, 95.4 to 100.0%). The microarray and dipstick can easily be adopted for the diagnosis of both B. mallei and B. pseudomallei infections in different animals. Future studies will show whether multiplex serological testing has the potential to differentiate between these pathogens.
Assuntos
Burkholderia mallei , Burkholderia pseudomallei , Mormo , Melioidose , Humanos , Cavalos , Animais , Mormo/diagnóstico , Melioidose/diagnóstico , Melioidose/veterinária , Análise Serial de Proteínas , Burkholderia mallei/genéticaRESUMO
Next-generation whole-genome sequencing is essential for high-resolution surveillance of bacterial pathogens, for example, during outbreak investigations or for source tracking and escape variant analysis. However, current global sequencing and bioinformatic bottlenecks and a long time to result with standard technologies demand new approaches. In this study, we investigated whether novel nanopore Q20+ long-read chemistry enables standardized and easily accessible high-resolution typing combined with core genome multilocus sequence typing (cgMLST). We set high requirements for discriminatory power by using the slowly evolving bacterium Bordetella pertussis as a model pathogen. Our results show that the increased raw read accuracy enables the description of epidemiological scenarios and phylogenetic linkages at the level of gold-standard short reads. The same was true for our variant analysis of vaccine antigens, resistance genes, and virulence factors, demonstrating that nanopore sequencing is a legitimate competitor in the area of next-generation sequencing (NGS)-based high-resolution bacterial typing. Furthermore, we evaluated the parameters for the fastest possible analysis of the data. By combining the optimized processing pipeline with real-time basecalling, we established a workflow that allows for highly accurate and extremely fast high-resolution typing of bacterial pathogens while sequencing is still in progress. Along with advantages such as low costs and portability, the approach suggested here might democratize modern bacterial typing, enabling more efficient infection control globally.
Assuntos
Bactérias , Genoma Bacteriano , Técnicas de Genotipagem , Tipagem de Sequências Multilocus , Sequenciamento por Nanoporos , Antígenos de Bactérias/genética , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/patogenicidade , Vacinas Bacterianas/genética , Bordetella pertussis/genética , Bordetella pertussis/isolamento & purificação , Bordetella pertussis/patogenicidade , Farmacorresistência Bacteriana/genética , Monitoramento Ambiental , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Tipagem de Sequências Multilocus/métodos , Sequenciamento por Nanoporos/métodos , Filogenia , Reprodutibilidade dos Testes , Fatores de Virulência/genéticaRESUMO
Burkholderia pseudomallei, the etiological agent of melioidosis in humans and animals, often occupies environmental niches and infection sites characterized by limited concentrations of oxygen. Versatile genomic features enable this pathogen to maintain its physiology and virulence under hypoxia, but the crucial regulatory networks employed to switch from oxygen dependent respiration to alternative terminal electron acceptors (TEA) like nitrate, remains poorly understood. Here, we combined a Tn5 transposon mutagenesis screen and an anaerobic growth screen to identify a two-component signal transduction system with homology to RegAB. We show that RegAB is not only essential for anaerobic growth, but also for full virulence in cell lines and a mouse infection model. Further investigations of the RegAB regulon, using a global transcriptomic approach, identified 20 additional regulators under transcriptional control of RegAB, indicating a superordinate role of RegAB in the B. pseudomallei anaerobiosis regulatory network. Of the 20 identified regulators, NarX/L and a FNR homolog were selected for further analyses and a role in adaptation to anaerobic conditions was demonstrated. Growth experiments identified nitrate and intermediates of the denitrification process as the likely signal activateing RegAB, NarX/L, and probably of the downstream regulators Dnr or NsrR homologs. While deletions of individual genes involved in the denitrification process demonstrated their important role in anaerobic fitness, they showed no effect on virulence. This further highlights the central role of RegAB as the master regulator of anaerobic metabolism in B. pseudomallei and that the complete RegAB-mediated response is required to achieve full virulence. In summary, our analysis of the RegAB-dependent modulon and its interconnected regulons revealed a key role for RegAB of B. pseudomallei in the coordination of the response to hypoxic conditions and virulence, in the environment and the host.
Assuntos
Proteínas de Bactérias/metabolismo , Burkholderia pseudomallei/genética , Melioidose/microbiologia , Adaptação Fisiológica , Anaerobiose , Animais , Proteínas de Bactérias/genética , Burkholderia pseudomallei/patogenicidade , Burkholderia pseudomallei/fisiologia , Feminino , Regulação Bacteriana da Expressão Gênica , Hipóxia , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Nitratos/metabolismo , Oxirredução , Transcriptoma , VirulênciaRESUMO
Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has become pandemic. Cytokine release syndrome occurring in a minority of SARS-CoV-2 infections is associated with severe disease and high mortality. We profiled the composition, activation, and proliferation of T cells in 20 patients with severe or critical COVID-19 and 40 matched healthy controls by flow cytometry. Unsupervised hierarchical cluster analysis based on 18 T cell subsets resulted in separation of healthy controls and COVID-19 patients. Compared to healthy controls, patients suffering from severe and critical COVID-19 had increased frequencies of activated and proliferating CD38+Ki67+ CD4+ and CD8+ T cells, suggesting active antiviral T cell defense. Frequencies of CD38+Ki67+ Th1 and CD4+ cells correlated negatively with plasma IL-6. Thus, our data suggest that patients suffering from COVID-19 have a distinct T cell composition that is potentially modulated by IL-6.
Assuntos
Linfócitos T CD8-Positivos/imunologia , COVID-19/imunologia , Imunidade Celular , SARS-CoV-2/imunologia , Células Th1/imunologia , ADP-Ribosil Ciclase 1/imunologia , Adulto , Linfócitos T CD8-Positivos/patologia , COVID-19/epidemiologia , COVID-19/patologia , Feminino , Humanos , Imunofenotipagem , Interleucina-6/imunologia , Antígeno Ki-67/imunologia , Masculino , Glicoproteínas de Membrana/imunologia , Pandemias , Estudos Retrospectivos , Células Th1/patologiaRESUMO
Measuring SARS-CoV-2 neutralizing antibodies after vaccination or natural infection remains a priority in the ongoing COVID-19 pandemic to determine immunity, especially against newly emerging variants. The gold standard for assessing antibody-mediated immunity against SARS-CoV-2 are cell-based live virus neutralization assays. These assays usually take several days, thereby limiting test capacities and the availability of rapid results. In this study, therefore, we developed a faster live virus assay, which detects neutralizing antibodies through the early measurement of antibody-mediated intracellular virus reduction by SARS-CoV-2 qRT-PCR. In our assay, Vero E6 cells are infected with virus isolates preincubated with patient sera and controls. After 24 h, the intracellular viral load is determined by qRT-PCR using a standard curve to calculate percent neutralization. Utilizing COVID-19 convalescent-phase sera, we show that our novel assay generates results with high sensitivity and specificity as we detected antiviral activity for all tested convalescent-phase sera, but no antiviral activity in prepandemic sera. The assay showed a strong correlation with a conventional virus neutralization assay (rS = 0.8910), a receptor-binding domain ELISA (rS = 0.8485), and a surrogate neutralization assay (rS = 0.8373), proving that quantifying intracellular viral RNA can be used to measure seroneutralization. Our assay can be adapted easily to new variants, as demonstrated by our cross-neutralization experiments. This characteristic is key for rapidly determining immunity against newly emerging variants. Taken together, the novel assay presented here reduces turnaround time significantly while making use of a highly standardized and sensitive SARS-CoV-2 qRT-PCR method as a readout.
Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/diagnóstico , Humanos , Testes de Neutralização/métodos , Pandemias , SARS-CoV-2/genética , Glicoproteína da Espícula de CoronavírusRESUMO
AIMS: To investigate the seroconversion following first and second COVID-19 vaccination in people with type 1 and type 2 diabetes in relation to glycaemic control prior to vaccination and to analyse the response in comparison to individuals without diabetes. MATERIALS AND METHODS: This prospective, multicentre cohort study analysed people with type 1 and type 2 diabetes and a glycated haemoglobin level ≤58 mmol/mol (7.5%) or >58 mmol/mol (7.5%), respectively, and healthy controls. Roche's Elecsys anti-SARS-CoV-2 S immunoassay targeting the receptor-binding domain was used to quantify anti-spike protein antibodies 7 to 14 days after the first and 14 to 21 days after the second vaccination. RESULTS: A total of 86 healthy controls were enrolled in the study, as well as 161 participants with diabetes, of whom 150 (75 with type 1 diabetes and 75 with type 2 diabetes) were eligible for the analysis. After the first vaccination, only 52.7% of participants in the type 1 diabetes group and 48.0% of those in the type 2 diabetes group showed antibody levels above the cut-off for positivity. Antibody levels after the second vaccination were similar in participants with type 1 diabetes, participants with type 2 diabetes and healthy controls after adjusting for age, sex and multiple testing (P > 0.05). Age (r = -0.45, P < 0.001) and glomerular filtration rate (r = 0.28, P = 0.001) were significantly associated with antibody response. CONCLUSIONS: Anti-SARS-CoV-2 S receptor-binding domain antibody levels after the second vaccination were comparable in healthy controls and in participants with type 1 and type 2 diabetes, irrespective of glycaemic control. Age and renal function correlated significantly with the extent of antibody levels.
Assuntos
COVID-19 , Diabetes Mellitus Tipo 2 , COVID-19/prevenção & controle , Vacinas contra COVID-19/uso terapêutico , Estudos de Coortes , Diabetes Mellitus Tipo 2/complicações , Humanos , Imunidade Humoral , Estudos Prospectivos , VacinaçãoRESUMO
Burkholderia pseudomallei causes the severe disease melioidosis. Whole-genome sequencing (WGS)-based typing methods currently offer the highest resolution for molecular investigations of this genetically diverse pathogen. Still, its routine application in diagnostic laboratories is limited by the need for high computing power, bioinformatic skills, and variable bioinformatic approaches, with the latter affecting the results. We therefore aimed to establish and validate a WGS-based core genome multilocus sequence typing (cgMLST) scheme, applicable in routine diagnostic settings. A soft defined core genome was obtained by challenging the B. pseudomallei reference genome K96243 with 469 environmental and clinical genomes, resulting in 4,221 core and 1,351 accessory targets. The scheme was validated with 320 WGS data sets. We compared our novel typing scheme with single nucleotide polymorphism-based approaches investigating closely and distantly related strains. Finally, we applied our scheme for tracking the environmental source of a recent infection. The validation of the scheme detected >95% good cgMLST target genes in 98.4% of the genomes. Comparison with existing typing methods revealed very good concordance. Our scheme proved to be applicable to investigating not only closely related strains but also the global B. pseudomallei population structure. We successfully utilized our scheme to identify a sugarcane field as the presumable source of a recent melioidosis case. In summary, we developed a robust cgMLST scheme that integrates high resolution, maximized standardization, and fast analysis for the nonbioinformatician. Our typing scheme has the potential to serve as a routinely applicable classification system in B. pseudomallei molecular epidemiology.
Assuntos
Burkholderia pseudomallei , Burkholderia pseudomallei/genética , Genoma Bacteriano/genética , Humanos , Epidemiologia Molecular , Tipagem de Sequências Multilocus , Sequenciamento Completo do GenomaRESUMO
BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) targets the respiratory and gastric epithelium, causing coronavirus disease 2019 (COVID-19). Tissue antigen expression variations influence host susceptibility to many infections. This study aimed to investigate the closely linked Lewis (FUT3) and ABO histo-blood types, including secretor (FUT2) status, to infections with SARS-CoV-2 and the corresponding severity of COVID-19. STUDY DESIGN AND METHODS: Patients (Caucasians, n = 338) were genotyped for ABO, FUT3, and FUT2, and compared to a reference population of blood donors (n = 250,298). The association between blood types and severity of COVID-19 was addressed by dividing patients into four categories: hospitalized individuals in general wards, patients admitted to the intensive care unit with and without intubation, and deceased patients. Comorbidities were considered in subsequent analyses. RESULTS: Patients with blood type Lewis (a-b-) or O were significantly less likely to be hospitalized (odds ratio [OR] 0.669, confidence interval [CI] 0.446-0.971, OR 0.710, CI 0.556-0.900, respectively), while type AB was significantly more prevalent in the patient cohort (OR 1.519, CI 1.014-2.203). The proportions of secretors/nonsecretors, and Lewis a+ or Lewis b+ types were consistent between patients and controls. The analyzed blood groups were not associated with the clinical outcome as defined. DISCUSSION: Blood types Lewis (a-b-) and O were found to be protective factors, whereas the group AB is suggested to be a risk factor for COVID-19. The antigens investigated may not be prognostic for disease severity, but a role for ABO isoagglutinins in SARS-CoV-2 infections is strongly suggested.
Assuntos
Sistema ABO de Grupos Sanguíneos , COVID-19/epidemiologia , COVID-19/etiologia , Suscetibilidade a Doenças , Antígenos do Grupo Sanguíneo de Lewis , SARS-CoV-2/imunologia , Sistema ABO de Grupos Sanguíneos/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , COVID-19/sangue , Comorbidade , Feminino , Interações Hospedeiro-Patógeno/imunologia , Humanos , Antígenos do Grupo Sanguíneo de Lewis/imunologia , Masculino , Pessoa de Meia-Idade , Razão de Chances , Vigilância em Saúde Pública , Adulto JovemRESUMO
This study evaluates the performance of the antigen-based anterior nasal screening programme implemented in all Austrian schools to detect SARS-CoV-2 infections. We combined nationwide antigen-based screening data obtained in March 2021 from 5,370 schools (Grade 1-8) with an RT-qPCR-based prospective cohort study comprising a representative sample of 244 schools. Considering a range of assumptions, only a subset of infected individuals are detected with the programme (low to moderate sensitivity) and non-infected individuals mainly tested negative (very high specificity).
Assuntos
COVID-19 , SARS-CoV-2 , Áustria , Humanos , Estudos Prospectivos , Instituições Acadêmicas , AutotesteRESUMO
We investigated why a clinical meticillin-resistant Staphylococcus aureus (MRSA) isolate yielded false-negative results with some commercial PCR tests for MRSA detection. We found that an epidemic European CC1-MRSA-IV clone generally exhibits this behaviour. The failure of the assays was attributable to a large insertion in the orfX/SCCmec integration site. To ensure the reliability of molecular MRSA tests, it is vital to monitor emergence of new SCCmec types and junction sites.
Assuntos
Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Infecções Estafilocócicas/diagnóstico , Áustria/epidemiologia , Reações Falso-Negativas , Feminino , Alemanha/epidemiologia , Humanos , Irlanda/epidemiologia , Staphylococcus aureus Resistente à Meticilina/genética , Pessoa de Meia-Idade , Infecções Estafilocócicas/epidemiologiaRESUMO
The environmental bacterium and potential biothreat agent Burkholderia pseudomallei causes melioidosis, an often fatal infectious disease. Increased serum bilirubin has been shown to be a negative predictive factor in melioidosis patients. We therefore investigated the role of heme oxygenase-1 (HO-1), which catalyzes the degradation of heme into the bilirubin precursor biliverdin, ferrous iron, and CO during B. pseudomallei infection. We found that infection of murine macrophages induces HO-1 expression, involving activation of several protein kinases and the transcription factor nuclear erythroid-related factor 2 (Nrf2). Deficiency of Nrf2 improved B. pseudomallei clearance by macrophages, whereas Nrf2 activation by sulforaphane and tert-butylhydroquinone with subsequent HO-1 induction enhanced intracellular bacterial growth. The HO-1 inducer cobalt protoporphyrin IX diminished proinflammatory cytokine levels, leading to an increased bacterial burden in macrophages. In contrast, HO-1 gene knockdown reduced the survival of intramacrophage B. pseudomallei Pharmacological administration of cobalt protoporphyrin IX to mice resulted in an enhanced bacterial load in various organs and was associated with higher mortality of intranasally infected mice. The unfavorable outcome of B. pseudomallei infection after HO-1 induction was associated with higher serum IL-6, TNF-α, and MCP-1 levels but decreased secretion of IFN-γ. Finally, we demonstrate that the CO-releasing molecule CORM-2 increases the B. pseudomallei load in macrophages and mice. Thus, our data suggest that the B. pseudomallei-mediated induction of HO-1 and the release of its metabolite CO impair bacterial clearance in macrophages and during murine melioidosis.
Assuntos
Monóxido de Carbono/metabolismo , Heme Oxigenase-1/biossíntese , Macrófagos/metabolismo , Macrófagos/microbiologia , Melioidose/metabolismo , Animais , Western Blotting , Burkholderia pseudomallei , Citocinas/biossíntese , Modelos Animais de Doenças , Citometria de Fluxo , Imunofluorescência , Técnicas de Silenciamento de Genes , Melioidose/patologia , Camundongos , Camundongos Endogâmicos C57BL , Compostos Organometálicos/metabolismo , Reação em Cadeia da Polimerase em Tempo RealRESUMO
The human pathogen Burkholderia pseudomallei and the related species Burkholderia thailandensis are facultative intracellular bacteria characterized by the ability to escape into the cytosol of the host cell and to stimulate the formation of multinucleated giant cells (MNGCs). MNGC formation is induced via an unknown mechanism by bacterial type VI secretion system 5 (T6SS-5), which is an essential virulence factor in both species. Despite the vital role of the intracellular life cycle in the pathogenesis of the bacteria, the range of host cell types permissive for initiation and completion of the intracellular cycle is poorly defined. In the present study, we used several different types of human primary cells to evaluate bacterial entry, intracellular survival, and MNGC formation. We report the capacity of B. pseudomallei to enter, efficiently replicate in, and mediate MNGC formation of vein endothelial and bronchial epithelial cells, indicating that the T6SS-5 is important in the host-pathogen interaction in these cells. Furthermore, we show that B. pseudomallei invades fibroblasts and keratinocytes and survives inside these cells as well as in monocyte-derived macrophages and neutrophils for at least 17 h postinfection; however, MNGC formation is not induced in these cells. In contrast, infection of mixed neutrophils and RAW264.7 macrophages with B. thailandensis stimulated the formation of heterotypic MNGCs in a T6SS-5-dependent manner. In summary, the ability of the bacteria to enter and survive as well as induce MNGC formation in certain host cells may contribute to the pathogenesis observed in B. pseudomallei infection.
Assuntos
Burkholderia pseudomallei/fisiologia , Células Gigantes/microbiologia , Interações Hospedeiro-Patógeno , Macrófagos/microbiologia , Fagócitos/microbiologia , Animais , Brônquios/citologia , Brônquios/microbiologia , Burkholderia pseudomallei/crescimento & desenvolvimento , Burkholderia pseudomallei/patogenicidade , Linhagem Celular , Células Cultivadas , Citosol/microbiologia , Células Endoteliais/microbiologia , Células Epiteliais/microbiologia , Fibroblastos/microbiologia , Humanos , Queratinócitos/microbiologia , Camundongos , Neutrófilos/microbiologia , Sistemas de Secreção Tipo VI/metabolismo , VirulênciaRESUMO
Aggregatibacter actinomycetemcomitans is a Gram-negative commensal bacterium of the oral cavity which has been associated with the pathogenesis of periodontitis with severe alveolar bone destruction. The role of host factors such as reactive oxygen and nitrogen intermediates in periodontal A. actinomycetemcomitans infection and progression to periodontitis is still ill-defined. Therefore, this study aimed to analyze the role of NADPH oxidase and inducible nitric oxide synthase (iNOS) in a murine model of A. actinomycetemcomitans-induced periodontitis. NADPH oxidase-deficient (gp91phox knockout [KO]), iNOS-deficient (iNOS KO), and C57BL/6 wild-type mice were orally infected with A. actinomycetemcomitans and analyzed for bacterial colonization at various time points. Alveolar bone mineral density and alveolar bone volume were quantified by three-dimensional micro-computed tomography, and the degree of tissue inflammation was calculated by histological analyses. At 5 weeks after infection, A. actinomycetemcomitans persisted at significantly higher levels in the murine oral cavities of infected gp91phox KO mice than in those of iNOS KO and C57BL/6 mice. Concomitantly, alveolar bone mineral density was significantly lower in all three infected groups than in uninfected controls, but with the highest loss of bone density in infected gp91phox KO mice. Only infected gp91phox KO mice revealed significant loss of alveolar bone volume and enhanced inflammatory cell infiltration, as well as an increased number of osteoclasts. Our results indicate that NADPH oxidase is important to control A. actinomycetemcomitans infection in the murine oral cavity and to prevent subsequent alveolar bone destruction and osteoclastogenesis.
Assuntos
Aggregatibacter actinomycetemcomitans , Resistência à Doença , NADPH Oxidases/metabolismo , Periodontite/metabolismo , Periodontite/microbiologia , Perda do Osso Alveolar/diagnóstico por imagem , Perda do Osso Alveolar/patologia , Animais , Carga Bacteriana , Densidade Óssea , Modelos Animais de Doenças , Feminino , Interações Hospedeiro-Patógeno , Glicoproteínas de Membrana/deficiência , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Knockout , NADPH Oxidase 2 , NADPH Oxidases/deficiência , NADPH Oxidases/genética , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Osteoclastos/metabolismo , Periodontite/diagnóstico , Periodontite/genéticaRESUMO
Burkholderia pseudomallei is present in the environment in many parts of the world and causes the often-fatal disease melioidosis. The sensitive detection and quantification of B. pseudomallei in the environment are a prerequisite for assessing the risk of infection. We recently reported the direct detection of B. pseudomallei in soil samples using a quantitative PCR (qPCR) targeting a single type three secretion system 1 (TTSS1) gene. Here, we extend the qPCR-based analysis of B. pseudomallei in soil by validating novel qPCR gene targets selected from a comparative genomic analysis. Two hundred soil samples from two rice paddies in northeast Thailand were evaluated, of which 47% (94/200) were B. pseudomallei culture positive. The TTSS1 qPCR and two novel qPCR assays that targeted open reading frames (ORFs) BPSS0087 and BPSS0745 exhibited detection rates of 76.5% (153/200), 34.5% (69/200), and 74.5% (150/200), respectively. The combination of TTSS1 and BPSS0745 qPCR increased the detection rate to 90% (180/200). Combining the results of the three qPCR assays and the BPSS1187 nested PCR previously published, all 200 samples were positive by at least one PCR assay. Samples positive by either TTSS1 (n = 153) or BPSS0745 (n = 150) qPCR were more likely to be direct-culture positive, with odds ratios of 4.0 (95% confidence interval [CI], 1.7 to 9.5; P < 0.001) and 9.0 (95% CI, 3.1 to 26.4; P < 0.001), respectively. High B. pseudomallei genome equivalents correlated with high CFU counts by culture. In conclusion, multitarget qPCR improved the B. pseudomallei detection rate in soil samples and predicted culture positivity. This approach has the potential for use as a sensitive environmental screening method for B. pseudomalleiIMPORTANCE The worldwide environmental distribution of the soil bacterium Burkholderia pseudomallei remains to be determined. So far, most environmental studies have relied on culture-based approaches to detect this pathogen. Since current culture methods are laborious, are time consuming, and have limited sensitivity, culture-independent and more sensitive methods are needed. In this study, we show that a B. pseudomallei-specific qPCR approach can detect significantly higher numbers of B. pseudomallei-positive soil samples from areas where it is endemic compared with that from culture. The use of multiple independent B. pseudomallei-specific qPCR targets further increased the detection rate of B. pseudomallei compared with that from single targets. Samples with a high molecular B. pseudomallei load were more likely to be culture positive. We conclude that our quantitative multitarget approach might be useful in defining areas where there is a risk of B. pseudomallei infections in different parts of the world.
Assuntos
Burkholderia pseudomallei/crescimento & desenvolvimento , Burkholderia pseudomallei/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real/métodos , Microbiologia do Solo , Técnicas Bacteriológicas , Burkholderia pseudomallei/genética , Meio Ambiente , Humanos , Melioidose/microbiologia , Fases de Leitura Aberta , Tailândia , Sistemas de Secreção Tipo III/genéticaRESUMO
Population-based studies on Staphylococcus aureus nasal colonization are scarce. We examined the prevalence, resistance, and molecular diversity of S. aureus in the general population in Northeast Germany. Nasal swabs were obtained from 3,891 adults in the large-scale population-based Study of Health in Pomerania (SHIP-TREND). Isolates were characterized using spa genotyping, as well as antibiotic resistance and virulence gene profiling. We observed an S. aureus prevalence of 27.2%. Nasal S. aureus carriage was associated with male sex and inversely correlated with age. Methicillin-resistant S. aureus (MRSA) accounted for 0.95% of the colonizing S. aureus strains. MRSA carriage was associated with frequent visits to hospitals, nursing homes, or retirement homes within the previous 24 months. All MRSA strains were resistant to multiple antibiotics. Most MRSA isolates belonged to the pandemic European hospital-acquired MRSA sequence type 22 (HA-MRSA-ST22) lineage. We also detected one livestock-associated MRSA ST398 (LA-MRSA-ST398) isolate, as well as six livestock-associated methicillin-susceptible S. aureus (LA-MSSA) isolates (clonal complex 1 [CC1], CC97, and CC398). spa typing revealed a diverse but also highly clonal S. aureus population structure. We identified a total of 357 spa types, which were grouped into 30 CCs or sequence types. The major seven CCs (CC30, CC45, CC15, CC8, CC7, CC22, and CC25) included 75% of all isolates. Virulence gene patterns were strongly linked to the clonal background. In conclusion, MSSA and MRSA prevalences and the molecular diversity of S. aureus in Northeast Germany are consistent with those of other European countries. The detection of HA-MRSA and LA-MRSA within the general population indicates possible transmission from hospitals and livestock, respectively, and should be closely monitored.