RESUMO
Transcription activation involves RNA polymerase II (Pol II) recruitment and release from the promoter into productive elongation, but how specific chromatin regulators control these steps is unclear. Here, we identify a novel activity of the histone acetyltransferase p300/CREB-binding protein (CBP) in regulating promoter-proximal paused Pol II. We find that Drosophila CBP inhibition results in "dribbling" of Pol II from the pause site to positions further downstream but impedes transcription through the +1 nucleosome genome-wide. Promoters strongly occupied by CBP and GAGA factor have high levels of paused Pol II, a unique chromatin signature, and are highly expressed regardless of cell type. Interestingly, CBP activity is rate limiting for Pol II recruitment to these highly paused promoters through an interaction with TFIIB but for transit into elongation by histone acetylation at other genes. Thus, CBP directly stimulates both Pol II recruitment and the ability to traverse the first nucleosome, thereby promoting transcription of most genes.
Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimologia , Nucleossomos/enzimologia , Regiões Promotoras Genéticas , RNA Polimerase II/metabolismo , Fatores de Transcrição de p300-CBP/metabolismo , Acetilação , Animais , Linhagem Celular , Cromatina/genética , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento , Histonas/metabolismo , Nucleossomos/genética , Ligação Proteica , RNA Polimerase II/genética , Fator de Transcrição TFIIB/genética , Fator de Transcrição TFIIB/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Fatores de Transcrição de p300-CBP/genéticaRESUMO
Mammalian DNA folds into 3D structures that facilitate and regulate genetic processes such as transcription, DNA repair, and epigenetics. Several insights derive from chromosome capture methods, such as Hi-C, which allow researchers to construct contact maps depicting 3D interactions among all DNA segment pairs. These maps show a complex cross-scale organization spanning megabase-pair compartments to short-ranged DNA loops. To better understand the organizing principles, several groups analyzed Hi-C data assuming a Russian-doll-like nested hierarchy where DNA regions of similar sizes merge into larger and larger structures. Apart from being a simple and appealing description, this model explains, e.g., the omnipresent chequerboard pattern seen in Hi-C maps, known as A/B compartments, and foreshadows the co-localization of some functionally similar DNA regions. However, while successful, this model is incompatible with the two competing mechanisms that seem to shape a significant part of the chromosomes' 3D organization: loop extrusion and phase separation. This paper aims to map out the chromosome's actual folding hierarchy from empirical data. To this end, we take advantage of Hi-C experiments and treat the measured DNA-DNA interactions as a weighted network. From such a network, we extract 3D communities using the generalized Louvain algorithm. This algorithm has a resolution parameter that allows us to scan seamlessly through the community size spectrum, from A/B compartments to topologically associated domains (TADs). By constructing a hierarchical tree connecting these communities, we find that chromosomes are more complex than a perfect hierarchy. Analyzing how communities nest relative to a simple folding model, we found that chromosomes exhibit a significant portion of nested and non-nested community pairs alongside considerable randomness. In addition, by examining nesting and chromatin types, we discovered that nested parts are often associated with active chromatin. These results highlight that cross-scale relationships will be essential components in models aiming to reach a deep understanding of the causal mechanisms of chromosome folding.
Assuntos
Cromatina , Cromossomos , Animais , Cromossomos/genética , Cromatina/genética , DNA/genética , Montagem e Desmontagem da Cromatina , Epigênese Genética , Mamíferos/genéticaRESUMO
The genomes of immortalized cell lines (and cancer cells) are characterized by multiple types of aberrations, ranging from single nucleotide polymorphisms (SNPs) to structural rearrangements that have accumulated over time. Consequently, it is difficult to estimate the relative impact of different aberrations, the order of events, and which gene functions were under selective pressure at the early stage towards cellular immortalization. Here, we have established novel cell cultures derived from Drosophila melanogaster embryos that were sampled at multiple time points over a one-year period. Using short-read DNA sequencing, we show that copy-number gain in preferentially stress-related genes were acquired in a dominant fraction of cells in 300-days old cultures. Furthermore, transposable elements were active in cells of all cultures. Only a few (<1%) SNPs could be followed over time, and these showed no trend to increase or decrease. We conclude that the early cellular responses of a novel culture comprise sequence duplication and transposable element activity. During immortalization, positive selection first occurs on genes that are related to stress response before shifting to genes that are related to growth.
Assuntos
Drosophila melanogaster , Duplicação Gênica , Animais , Drosophila melanogaster/genética , Análise de Sequência de DNA , Linhagem Celular , Elementos de DNA Transponíveis/genéticaRESUMO
BACKGROUND: Immortalized cell lines are widely used model systems whose genomes are often highly rearranged and polyploid. However, their genome structure is seldom deciphered and is thus not accounted for during analyses. We therefore used linked short- and long-read sequencing to perform haplotype-level reconstruction of the genome of a Drosophila melanogaster cell line (S2-DRSC) with a complex genome structure. RESULTS: Using a custom implementation (that is designed to use ultra-long reads in complex genomes with nested rearrangements) to call structural variants (SVs), we found that the most common SV was repetitive sequence insertion or deletion (> 80% of SVs), with Gypsy retrotransposon insertions dominating. The second most common SV was local sequence duplication. SNPs and other SVs were rarer, but several large chromosomal translocations and mitochondrial genome insertions were observed. Haplotypes were highly similar at the nucleotide level but structurally very different. Insertion SVs existed at various haplotype frequencies and were unlinked on chromosomes, demonstrating that haplotypes have different structures and suggesting the existence of a mechanism that allows SVs to propagate across haplotypes. Finally, using public short-read data, we found that transposable element insertions and local duplications are common in other D. melanogaster cell lines. CONCLUSIONS: The S2-DRSC cell line evolved through retrotransposon activity and vast local sequence duplications, that we hypothesize were the products of DNA re-replication events. Additionally, mutations can propagate across haplotypes (possibly explained by mitotic recombination), which enables fine-tuning of mutational impact and prevents accumulation of deleterious events, an inherent problem of clonal reproduction. We conclude that traditional linear homozygous genome representation conceals the complexity when dealing with rearranged and heterozygous clonal cells.
Assuntos
Drosophila melanogaster , Genoma Mitocondrial , Animais , Linhagem Celular , Drosophila/genética , Drosophila melanogaster/genética , Haplótipos , Reprodução , Retroelementos/genética , Análise de Sequência de DNARESUMO
SUMMARY: The Flexible Taxonomy Database framework provides a method for modification and merging official and custom taxonomic databases to create improved databases. Using such databases will increase accuracy and precision of existing methods to classify sequence reads. AVAILABILITY AND IMPLEMENTATION: Source code is freely available at https://github.com/FOI-Bioinformatics/flextaxd and installable through Bioconda.
Assuntos
Software , Bases de Dados FactuaisRESUMO
The 3D organisation of the genome in interphase cells is not a randomly folded polymer. Rather, experiments show that chromosomes arrange into a network of 3D compartments that correlate with biological processes, such as transcription, chromatin modifications and protein binding. However, these compartments do not exist during cell division when the DNA is condensed, and it is unclear how and when they emerge. In this paper, we focus on the early stages after cell division as the chromosomes start to decondense. We use a simple polymer model to understand the types of 3D structures that emerge from local unfolding of a compact initial state. From simulations, we recover 3D compartments, such as TADs and A/B compartments that are consistently detected in chromosome capture experiments across cell types and organisms. This suggests that the large-scale 3D organisation is a result of an inflation process.
Assuntos
Cromossomos/ultraestrutura , Genoma , Processamento de Imagem Assistida por Computador/estatística & dados numéricos , Imageamento Tridimensional/métodos , Simulação de Dinâmica Molecular , Animais , Montagem e Desmontagem da Cromatina , DNA/ultraestrutura , Humanos , MitoseRESUMO
Polycomb group proteins are essential epigenetic repressors. They form multiple protein complexes of which two kinds, PRC1 and PRC2, are indispensable for repression. Although much is known about their biochemical properties, how mammalian PRC1 and PRC2 are targeted to specific genes is poorly understood. Here, we establish the cyclin D2 (CCND2) oncogene as a simple model to address this question. We provide the evidence that the targeting of PRC1 to CCND2 involves a dedicated PRC1-targeting element (PTE). The PTE appears to act in concert with an adjacent cytosine-phosphate-guanine (CpG) island to arrange for the robust binding of PRC1 and PRC2 to repressed CCND2 Our findings pave the way to identify sequence-specific DNA-binding proteins implicated in the targeting of mammalian PRC1 complexes and provide novel link between polycomb repression and cancer.
Assuntos
Ciclina D2/genética , Ciclina D2/metabolismo , Oncogenes , Proteínas do Grupo Polycomb/metabolismo , Animais , Sítios de Ligação , Inativação Gênica , Humanos , Camundongos , Ligação Proteica , Transcrição GênicaRESUMO
Hi-C experiments generate data in form of large genome contact maps (Hi-C maps). These show that chromosomes are arranged in a hierarchy of three-dimensional compartments. But to understand how these compartments form and by how much they affect genetic processes such as gene regulation, biologists and bioinformaticians need efficient tools to visualize and analyze Hi-C data. However, this is technically challenging because these maps are big. In this paper, we remedied this problem, partly by implementing an efficient file format and developed the genome contact map explorer platform. Apart from tools to process Hi-C data, such as normalization methods and a programmable interface, we made a graphical interface that let users browse, scroll and zoom Hi-C maps to visually search for patterns in the Hi-C data. In the software, it is also possible to browse several maps simultaneously and plot related genomic data. The software is openly accessible to the scientific community.
Assuntos
Mapeamento Cromossômico/métodos , Marcadores Genéticos , Genoma Humano , Software , Linhagem Celular Tumoral , Mapeamento Cromossômico/estatística & dados numéricos , Gráficos por Computador , Humanos , Armazenamento e Recuperação da Informação , Células K562 , Linfócitos/metabolismo , Linfócitos/patologiaRESUMO
Polycomb Group (PcG) proteins are epigenetic repressors essential for control of development and cell differentiation. They form multiple complexes of which PRC1 and PRC2 are evolutionary conserved and obligatory for repression. The targeting of PRC1 and PRC2 is poorly understood and was proposed to be hierarchical and involve tri-methylation of histone H3 (H3K27me3) and/or monoubiquitylation of histone H2A (H2AK118ub). Here, we present a strict test of this hypothesis using the Drosophila model. We discover that neither H3K27me3 nor H2AK118ub is required for targeting PRC complexes to Polycomb Response Elements (PREs). We find that PRC1 can bind PREs in the absence of PRC2 but at many PREs PRC2 requires PRC1 to be targeted. We show that one role of H3K27me3 is to allow PcG complexes anchored at PREs to interact with surrounding chromatin. In contrast, the bulk of H2AK118ub is unrelated to PcG repression. These findings radically change our view of how PcG repression is targeted and suggest that PRC1 and PRC2 can communicate independently of histone modifications.
Assuntos
Proteínas de Drosophila/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Proteínas do Grupo Polycomb/metabolismo , Elementos de Resposta , Animais , Animais Geneticamente Modificados , Cromatina/genética , Cromatina/metabolismo , Proteínas de Drosophila/genética , Genoma de Inseto , Histona-Lisina N-Metiltransferase/genética , Histonas/genética , Lisina/metabolismo , Metilação , Proteínas Associadas aos Microtúbulos , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 1/metabolismo , Proteínas do Grupo Polycomb/genética , UbiquitinaçãoRESUMO
Polycomb Group (PcG) proteins are epigenetic repressors that control metazoan development and cell differentiation. In Drosophila, PcG proteins form five distinct complexes targeted to genes by Polycomb Response Elements (PREs). Of all PcG complexes PhoRC is the only one that contains a sequence-specific DNA binding subunit (PHO or PHOL), which led to a model that places PhoRC at the base of the recruitment hierarchy. Here we demonstrate that in vivo PHO is preferred to PHOL as a subunit of PhoRC and that PHO and PHOL associate with PREs and a subset of transcriptionally active promoters. Although the binding to the promoter sites depends on the quality of recognition sequences, the binding to PREs does not. Instead, the efficient recruitment of PhoRC to PREs requires the SFMBT subunit and crosstalk with Polycomb Repressive Complex 1. We find that human YY1 protein, the ortholog of PHO, binds sites at active promoters in the human genome but does not bind most PcG target genes, presumably because the interactions involved in the targeting to Drosophila PREs are lost in the mammalian lineage. We conclude that the recruitment of PhoRC to PREs is based on combinatorial interactions and propose that such a recruitment strategy is important to attenuate the binding of PcG proteins when the target genes are transcriptionally active. Our findings allow the appropriate placement of PhoRC in the PcG recruitment hierarchy and provide a rationale to explain why YY1 is unlikely to serve as a general recruiter of mammalian Polycomb complexes despite its reported ability to participate in PcG repression in flies.
Assuntos
Diferenciação Celular/genética , Complexo Repressor Polycomb 1/genética , Proteínas do Grupo Polycomb/genética , Elementos de Resposta/genética , Animais , Cromatina/genética , Proteínas de Ligação a DNA/genética , Drosophila melanogaster , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Complexo Repressor Polycomb 1/metabolismo , Proteínas do Grupo Polycomb/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Fator de Transcrição YY1/genética , Fator de Transcrição YY1/metabolismoRESUMO
Long non-coding RNAs contribute to dosage compensation in both mammals and Drosophila by inducing changes in the chromatin structure of the X-chromosome. In Drosophila melanogaster, roX1 and roX2 are long non-coding RNAs that together with proteins form the male-specific lethal (MSL) complex, which coats the entire male X-chromosome and mediates dosage compensation by increasing its transcriptional output. Studies on polytene chromosomes have demonstrated that when both roX1 and roX2 are absent, the MSL-complex becomes less abundant on the male X-chromosome and is relocated to the chromocenter and the 4th chromosome. Here we address the role of roX RNAs in MSL-complex targeting and the evolution of dosage compensation in Drosophila. We performed ChIP-seq experiments which showed that MSL-complex recruitment to high affinity sites (HAS) on the X-chromosome is independent of roX and that the HAS sequence motif is conserved in D. simulans. Additionally, a complete and enzymatically active MSL-complex is recruited to six specific genes on the 4th chromosome. Interestingly, our sequence analysis showed that in the absence of roX RNAs, the MSL-complex has an affinity for regions enriched in Hoppel transposable elements and repeats in general. We hypothesize that roX mutants reveal the ancient targeting of the MSL-complex and propose that the role of roX RNAs is to prevent the binding of the MSL-complex to heterochromatin.
Assuntos
Proteínas de Ligação a DNA/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/genética , Heterocromatina/metabolismo , Proteínas Nucleares/fisiologia , Fatores de Transcrição/fisiologia , Animais , Sequência de Bases , Sequência Conservada , Mecanismo Genético de Compensação de Dose , Drosophila melanogaster/metabolismo , Feminino , Masculino , Cromossomos Politênicos/metabolismo , Ligação Proteica , Transporte Proteico , RNA não Traduzido , Sequências Repetitivas de Ácido NucleicoRESUMO
Heterochromatin protein 1a (HP1a) is a chromatin-associated protein important for the formation and maintenance of heterochromatin. In Drosophila, the two histone methyltransferases SETDB1 and Su(var)3-9 mediate H3K9 methylation marks that initiates the establishment and spreading of HP1a-enriched chromatin. Although HP1a is generally regarded as a factor that represses gene transcription, several reports have linked HP1a binding to active genes, and in some cases, it has been shown to stimulate transcriptional activity. To clarify the function of HP1a in transcription regulation and its association with Su(var)3-9, SETDB1 and the chromosome 4-specific protein POF, we conducted genome-wide expression studies and combined the results with available binding data in Drosophila melanogaster. The results suggest that HP1a, SETDB1 and Su(var)3-9 repress genes on chromosome 4, where non-ubiquitously expressed genes are preferentially targeted, and stimulate genes in pericentromeric regions. Further, we showed that on chromosome 4, Su(var)3-9, SETDB1 and HP1a target the same genes. In addition, we found that transposons are repressed by HP1a and Su(var)3-9 and that the binding level and expression effects of HP1a are affected by gene length. Our results indicate that genes have adapted to be properly expressed in their local chromatin environment.
Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Regulação da Expressão Gênica , Proteínas Repressoras/metabolismo , Animais , Centrômero , Homólogo 5 da Proteína Cromobox , Cromossomos de Insetos , Elementos de DNA Transponíveis , Drosophila melanogaster/metabolismo , Genoma de Inseto , Histona-Lisina N-Metiltransferase , Ativação TranscricionalRESUMO
Heterochromatin protein 1 (HP1) proteins, recognized readers of the heterochromatin mark methylation of histone H3 lysine 9 (H3K9me), are important regulators of heterochromatin-mediated gene silencing and chromosome structure. In Drosophila melanogaster three histone lysine methyl transferases (HKMTs) are associated with the methylation of H3K9: Su(var)3-9, Setdb1, and G9a. To probe the dependence of HP1a binding on H3K9me, its dependence on these three HKMTs, and the division of labor between the HKMTs, we have examined correlations between HP1a binding and H3K9me patterns in wild type and null mutants of these HKMTs. We show here that Su(var)3-9 controls H3K9me-dependent binding of HP1a in pericentromeric regions, while Setdb1 controls it in cytological region 2L:31 and (together with POF) in chromosome 4. HP1a binds to the promoters and within bodies of active genes in these three regions. More importantly, however, HP1a binding at promoters of active genes is independent of H3K9me and POF. Rather, it is associated with heterochromatin protein 2 (HP2) and open chromatin. Our results support a hypothesis in which HP1a nucleates with high affinity independently of H3K9me in promoters of active genes and then spreads via H3K9 methylation and transient looping contacts with those H3K9me target sites.
Assuntos
Proteínas Cromossômicas não Histona , Cromossomos , Drosophila melanogaster , Histona Desmetilases , Animais , Cromatina/genética , Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Cromossomos/genética , Cromossomos/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Inativação Gênica , Heterocromatina/genética , Heterocromatina/metabolismo , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Histona-Lisina N-Metiltransferase , Histonas/genética , Metilação , Metiltransferases/genética , Metiltransferases/metabolismo , Regiões Promotoras GenéticasRESUMO
CBP and the related p300 protein are widely used transcriptional co-activators in metazoans that interact with multiple transcription factors. Whether CBP/p300 occupies the genome equally with all factors or preferentially binds together with some factors is not known. We therefore compared Drosophila melanogaster CBP (nejire) ChIP-seq peaks with regions bound by 40 different transcription factors in early embryos, and we found high co-occupancy with the Rel-family protein Dorsal. Dorsal is required for CBP occupancy in the embryo, but only at regions where few other factors are present. CBP peaks in mutant embryos lacking nuclear Dorsal are best correlated with TGF-ß/Dpp-signaling and Smad-protein binding. Differences in CBP occupancy in mutant embryos reflect gene expression changes genome-wide, but CBP also occupies some non-expressed genes. The presence of CBP at silent genes does not result in histone acetylation. We find that Polycomb-repressed H3K27me3 chromatin does not preclude CBP binding, but restricts histone acetylation at CBP-bound genomic sites. We conclude that CBP occupancy in Drosophila embryos preferentially overlaps factors controlling dorso-ventral patterning and that CBP binds silent genes without causing histone hyperacetylation.
Assuntos
Padronização Corporal , Proteínas de Drosophila , Drosophila melanogaster , Proteínas Nucleares , Fosfoproteínas , Proteína Smad4 , Fatores de Transcrição , Fatores de Transcrição de p300-CBP , Animais , Sítios de Ligação , Padronização Corporal/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Desenvolvimento Embrionário/genética , Histona Desmetilases/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Ligação Proteica , Transdução de Sinais , Proteína Smad4/genética , Proteína Smad4/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fatores de Transcrição de p300-CBP/genética , Fatores de Transcrição de p300-CBP/metabolismoRESUMO
Variation in the number of individual chromosomes (chromosomal aneuploidy) or chromosome segments (segmental aneuploidy) is associated with developmental abnormalities and reduced fitness in all species examined; it is the leading cause of miscarriages and mental retardation and a hallmark of cancer. However, despite their documented importance in disease, the effects of aneuploidies on the transcriptome remain largely unknown. We have examined the expression effects of seven heterozygous chromosomal deficiencies, both singly and in all pairwise combinations, in Drosophila melanogaster. The results show that genes in one copy are buffered, i.e. expressed more strongly than the expected 50% of wild-type level, the buffering is general and not influenced by other monosomic regions. Furthermore, long genes are significantly more highly buffered than short genes and gene length appears to be the primary determinant of the buffering degree. For short genes the degree of buffering depends on expression level and expression pattern. Furthermore, the results show that in deficiency heterozygotes the expression of genes involved in proteolysis is enhanced and negatively correlates with the degree of buffering. Thus, enhanced proteolysis appears to be a general response to aneuploidy.
Assuntos
Drosophila melanogaster/genética , Monossomia , Proteólise , Aneuploidia , Animais , Drosophila melanogaster/metabolismo , Deleção de Genes , Expressão Gênica , Genes de InsetosRESUMO
In Drosophila, the global increase in transcription from the male X chromosome to compensate for its monosomy is mediated by the male-specific lethal (MSL) complex consisting of five proteins and two non-coding RNAs, roX1 and roX2. After an initial sequence-dependent recognition by the MSL complex of 150-300 high affinity sites, the spread to the majority of the X-linked genes depends on local MSL-complex concentration and active transcription. We have explored whether any additional RNA species are associated with the MSL complex. No additional roX RNA species were found, but a strong association was found between a spliced and poly-adenylated msl2 RNA and the MSL complex. Based on our results, we propose a model in which a non-chromatin-associated partial or complete MSL-complex titrates newly transcribed msl2 mRNA and thus regulates the amount of available MSL complex by feedback. This represents a novel mechanism in chromatin structure regulation.
Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Proteínas Nucleares/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição/genética , Animais , Linhagem Celular , Núcleo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/metabolismo , Cromossomo XRESUMO
Polycomb (PcG) regulation has been thought to produce stable long-term gene silencing. Genomic analyses in Drosophila and mammals, however, have shown that it targets many genes, which can switch state during development. Genetic evidence indicates that critical for the active state of PcG target genes are the histone methyltransferases Trithorax (TRX) and ASH1. Here we analyze the repertoire of alternative states in which PcG target genes are found in different Drosophila cell lines and the role of PcG proteins TRX and ASH1 in controlling these states. Using extensive genome-wide chromatin immunoprecipitation analysis, RNAi knockdowns, and quantitative RT-PCR, we show that, in addition to the known repressed state, PcG targets can reside in a transcriptionally active state characterized by formation of an extended domain enriched in ASH1, the N-terminal, but not C-terminal moiety of TRX and H3K27ac. ASH1/TRX N-ter domains and transcription are not incompatible with repressive marks, sometimes resulting in a "balanced" state modulated by both repressors and activators. Often however, loss of PcG repression results instead in a "void" state, lacking transcription, H3K27ac, or binding of TRX or ASH1. We conclude that PcG repression is dynamic, not static, and that the propensity of a target gene to switch states depends on relative levels of PcG, TRX, and activators. N-ter TRX plays a remarkable role that antagonizes PcG repression and preempts H3K27 methylation by acetylation. This role is distinct from that usually attributed to TRX/MLL proteins at the promoter. These results have important implications for Polycomb gene regulation, the "bivalent" chromatin state of embryonic stem cells, and gene expression in development.
Assuntos
Cromatina/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Epigênese Genética , Acetilação , Animais , Linhagem Celular , Cromatina/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Complexo Repressor Polycomb 1 , Ligação Proteica , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
BACKGROUND: In Drosophila melanogaster, the dosage-compensation system that equalizes X-linked gene expression between males and females, thereby assuring that an appropriate balance is maintained between the expression of genes on the X chromosome(s) and the autosomes, is at least partially mediated by the Male-Specific Lethal (MSL) complex. This complex binds to genes with a preference for exons on the male X chromosome with a 3' bias, and it targets most expressed genes on the X chromosome. However, a number of genes are expressed but not targeted by the complex. High affinity sites seem to be responsible for initial recruitment of the complex to the X chromosome, but the targeting to and within individual genes is poorly understood. RESULTS: We have extensively examined X chromosome sequence variation within five types of gene features (promoters, 5' UTRs, coding sequences, introns, 3' UTRs) and intergenic sequences, and assessed its potential involvement in dosage compensation. Presented results show that: the X chromosome has a distinct sequence composition within its gene features; some of the detected variation correlates with genes targeted by the MSL-complex; the insulator protein BEAF-32 preferentially binds upstream of MSL-bound genes; BEAF-32 and MOF co-localizes in promoters; and that bound genes have a distinct sequence composition that shows a 3' bias within coding sequence. CONCLUSIONS: Although, many strongly bound genes are close to a high affinity site neither our promoter motif nor our coding sequence signatures show any correlation to HAS. Based on the results presented here, we believe that there are sequences in the promoters and coding sequences of targeted genes that have the potential to direct the secondary spreading of the MSL-complex to nearby genes.
Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Genes de Insetos/genética , Caracteres Sexuais , Cromossomo X/genética , Regiões 3' não Traduzidas/genética , Regiões 5' não Traduzidas/genética , Animais , Sequência de Bases , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas do Olho/metabolismo , Variação Genética , Histona Acetiltransferases/metabolismo , Íntrons/genética , Masculino , Análise Multivariada , Proteínas Nucleares/metabolismo , Fases de Leitura Aberta/genética , Regiões Promotoras Genéticas/genética , Transporte Proteico , Especificidade por SubstratoRESUMO
Copy number variation (CNV) in terms of aneuploidies of both entire chromosomes and chromosomal segments is an important evolutionary driving force, but it is inevitably accompanied by potentially problematic variations in gene doses and genomic instability. Thus, a delicate balance must be maintained between mechanisms that compensate for variations in gene doses (and thus allow such genomic variability) and selection against destabilizing CNVs. In Drosophila, three known compensatory mechanisms have evolved: a general segmental aneuploidy-buffering system and two chromosome-specific systems. The two chromosome-specific systems are the male-specific lethal complex, which is important for dosage compensation of the male X chromosome, and Painting of fourth, which stimulates expression of the fourth chromosome. In this review, we discuss the origin and function of buffering and compensation using Drosophila as a model.
Assuntos
Cromossomos/genética , Variações do Número de Cópias de DNA , Evolução Molecular , Regulação da Expressão Gênica , Aneuploidia , Animais , Mecanismo Genético de Compensação de Dose , Drosophila/genética , Feminino , Dosagem de Genes , Genes Letais/genética , Instabilidade Genômica , Humanos , Masculino , Filogenia , Seleção Genética , Transcrição GênicaRESUMO
Chromosomal instability, which involves the deletion and duplication of chromosomes or chromosome parts, is a common feature of cancers, and deficiency screens are commonly used to detect genes involved in various biological pathways. However, despite their importance, the effects of deficiencies, duplications, and chromosome losses on the regulation of whole chromosomes and large chromosome domains are largely unknown. Therefore, to explore these effects, we examined expression patterns of genes in several Drosophila deficiency hemizygotes and a duplication hemizygote using microarrays. The results indicate that genes expressed in deficiency hemizygotes are significantly buffered, and that the buffering effect is general rather than being mainly mediated by feedback regulation of individual genes. In addition, differentially expressed genes in haploid condition appear to be generally more strongly buffered than ubiquitously expressed genes in haploid condition, but, among genes present in triploid condition, ubiquitously expressed genes are generally more strongly buffered than differentially expressed genes. Furthermore, we show that the 4th chromosome is compensated in response to dose differences. Our results suggest general mechanisms have evolved that stimulate or repress gene expression of aneuploid regions as appropriate, and on the 4th chromosome of Drosophila this compensation is mediated by Painting of Fourth (POF).