Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biotechnol Bioeng ; 117(12): 3986-4000, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32725887

RESUMO

The Third Modeling Workshop focusing on bioprocess modeling was held in Kenilworth, NJ in May 2019. A summary of these Workshop proceedings is captured in this manuscript. Modeling is an active area of research within the biotechnology community, and there is a critical need to assess the current state and opportunities for continued investment to realize the full potential of models, including resource and time savings. Beyond individual presentations and topics of novel interest, a substantial portion of the Workshop was devoted toward group discussions of current states and future directions in modeling fields. All scales of modeling, from biophysical models at the molecular level and up through large scale facility and plant modeling, were considered in these discussions and are summarized in the manuscript. Model life cycle management from model development to implementation and sustainment are also considered for different stages of clinical development and commercial production. The manuscript provides a comprehensive overview of bioprocess modeling while suggesting an ideal future state with standardized approaches aligned across the industry.


Assuntos
Biotecnologia , Simulação por Computador , Modelos Teóricos
2.
J Biol Chem ; 291(9): 4658-70, 2016 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-26728454

RESUMO

Inter-α-inhibitor is a proteoglycan of unique structure. The protein consists of three subunits, heavy chain 1, heavy chain 2, and bikunin covalently joined by a chondroitin sulfate chain originating at Ser-10 of bikunin. Inter-α-inhibitor interacts with an inflammation-associated protein, tumor necrosis factor-inducible gene 6 protein, in the extracellular matrix. This interaction leads to transfer of the heavy chains from the chondroitin sulfate of inter-α-inhibitor to hyaluronan and consequently to matrix stabilization. Divalent cations and heavy chain 2 are essential co-factors in this transfer reaction. In the present study, we have investigated how divalent cations in concert with the chondroitin sulfate chain influence the structure and stability of inter-α-inhibitor. The results showed that Mg(2+) or Mn(2+), but not Ca(2+), induced a conformational change in inter-α-inhibitor as evidenced by a decrease in the Stokes radius and a bikunin chondroitin sulfate-dependent increase of the thermodynamic stability. This structure was shown to be essential for the ability of inter-α-inhibitor to participate in extracellular matrix stabilization. In addition, the data revealed that bikunin was positioned adjacent to both heavy chains and that the two heavy chains also were in close proximity. The chondroitin sulfate chain interacted with all protein components and inter-α-inhibitor dissociated when it was degraded. Conventional purification protocols result in the removal of the Mg(2+) found in plasma and because divalent cations influence the conformation and affect function it is important to consider this when characterizing the biological activity of inter-α-inhibitor.


Assuntos
alfa-Globulinas/química , Sulfatos de Condroitina/química , Magnésio/química , Manganês/química , Modelos Moleculares , Proteoglicanas/química , alfa-Globulinas/isolamento & purificação , alfa-Globulinas/metabolismo , Sítios de Ligação , Sulfatos de Condroitina/metabolismo , Reagentes de Ligações Cruzadas/química , Temperatura Alta/efeitos adversos , Humanos , Ligantes , Magnésio/metabolismo , Manganês/metabolismo , Conformação Molecular , Conformação Proteica , Pegadas de Proteínas , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Estabilidade Proteica , Subunidades Proteicas/química , Subunidades Proteicas/isolamento & purificação , Subunidades Proteicas/metabolismo , Desdobramento de Proteína , Proteoglicanas/metabolismo
3.
J Biol Chem ; 291(51): 26540-26553, 2016 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-27784787

RESUMO

Epigallocatechin-3-gallate (EGCG) is the major polyphenol in green tea. It has antimicrobial properties and disrupts the ordered structure of amyloid fibrils involved in human disease. The antimicrobial effect of EGCG against the opportunistic pathogen Pseudomonas aeruginosa has been shown to involve disruption of quorum sensing (QS). Functional amyloid fibrils in P. aeruginosa (Fap) are able to bind and retain quorum-sensing molecules, suggesting that EGCG interferes with QS through structural remodeling of amyloid fibrils. Here we show that EGCG inhibits the ability of Fap to form fibrils; instead, EGCG stabilizes protein oligomers. Existing fibrils are remodeled by EGCG into non-amyloid aggregates. This fibril remodeling increases the binding of pyocyanin, demonstrating a mechanism by which EGCG can affect the QS function of functional amyloid. EGCG reduced the amyloid-specific fluorescent thioflavin T signal in P. aeruginosa biofilms at concentrations known to exert an antimicrobial effect. Nanoindentation studies showed that EGCG reduced the stiffness of biofilm containing Fap fibrils but not in biofilm with little Fap. In a combination treatment with EGCG and tobramycin, EGCG had a moderate effect on the minimum bactericidal eradication concentration against wild-type P. aeruginosa biofilms, whereas EGCG had a more pronounced effect when Fap was overexpressed. Our results provide a direct molecular explanation for the ability of EGCG to disrupt P. aeruginosa QS and modify its biofilm and strengthens the case for EGCG as a candidate in multidrug treatment of persistent biofilm infections.


Assuntos
Amiloide/biossíntese , Proteínas de Bactérias/biossíntese , Biofilmes/efeitos dos fármacos , Catequina/análogos & derivados , Farmacorresistência Bacteriana/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Tobramicina/farmacologia , Benzotiazóis , Biofilmes/crescimento & desenvolvimento , Catequina/farmacologia , Humanos , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/metabolismo , Tiazóis/farmacologia
4.
Biochemistry ; 55(16): 2344-57, 2016 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-27042751

RESUMO

Lattice corneal dystrophy is associated with painful recurrent corneal erosions and amyloid corneal opacities induced by transforming growth factor ß-induced protein (TGFBIp) that impairs vision. The exact mechanism of amyloid fibril formation in corneal dystrophy is unknown but has been associated with destabilizing mutations in the fourth fasciclin 1 (Fas1-4) domain of TGFBIp. The green tea compound epigallocatechin gallate (EGCG) has been found to inhibit fibril formation of various amyloidogenic proteins in vitro. In this study, we investigated the effect of EGCG as a potential treatment in lattice corneal dystrophy (LCD) using Fas1-4 with the naturally occurring LCD-inducing A546T mutation. A fewfold molar excess of EGCG was found to inhibit fibril formation in vitro by directing Fas1-4 A546T into stable EGCG-bound protein oligomers. Incubation with 2 molar equiv of EGCG led to a 4-fold reduction in the aggregates' membrane disruptive potential, potentially indicative of significantly lower cytotoxicity with regard to corneal erosions. EGCG did not induce oligomer formation by wild-type Fas1-4, indicating that treatment with EGCG would not interfere with the native function of the wild-type protein. Addition of EGCG to 10-day-old fibrils reduced fibril content in a dose-dependent manner. Proteinase K was found to reduce the light scattering of nontreated fibrils by 31% but reduced that of fibrils treated with 8 molar equiv of EGCG by 85%. This suggests that EGCG remodeling of fibril structure can facilitate aggregate removal by endogenous proteases and thus alleviate the protein deposits' light scattering symptoms.


Assuntos
Amiloide/metabolismo , Antioxidantes/farmacologia , Catequina/análogos & derivados , Proteínas da Matriz Extracelular/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Amiloide/química , Catequina/farmacologia , Permeabilidade da Membrana Celular/efeitos dos fármacos , Distrofias Hereditárias da Córnea/tratamento farmacológico , Distrofias Hereditárias da Córnea/metabolismo , Proteínas da Matriz Extracelular/química , Proteínas da Matriz Extracelular/ultraestrutura , Humanos , Lipossomos/metabolismo , Peptídeo Hidrolases/metabolismo , Domínios Proteicos , Multimerização Proteica/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Fator de Crescimento Transformador beta/química
5.
J Biol Chem ; 290(33): 20590-600, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26109065

RESUMO

Archaea are renowned for their ability to thrive in extreme environments, although they can be found in virtually all habitats. Their adaptive success is linked to their unique cell envelopes that are extremely resistant to chemical and thermal denaturation and that resist proteolysis by common proteases. Here we employ amyloid-specific conformation antibodies and biophysical techniques to show that the extracellular cell wall sheaths encasing the methanogenic archaea Methanosaeta thermophila PT are functional amyloids. Depolymerization of sheaths and subsequent MS/MS analyses revealed that the sheaths are composed of a single major sheath protein (MspA). The amyloidogenic nature of MspA was confirmed by in vitro amyloid formation of recombinant MspA under a wide range of environmental conditions. This is the first report of a functional amyloid from the archaeal domain of life. The amyloid nature explains the extreme resistance of the sheath, the elastic properties that allow diffusible substrates to penetrate through expandable hoop boundaries, and how the sheaths are able to split and elongate outside the cell. The archaeal sheath amyloids do not share homology with any of the currently known functional amyloids and clearly represent a new function of the amyloid protein fold.


Assuntos
Amiloide/fisiologia , Methanosarcinales/fisiologia , Amiloide/biossíntese , Methanosarcinales/metabolismo , Microscopia Eletrônica de Transmissão , Espectrometria de Massas em Tandem
6.
J Biol Chem ; 290(10): 6457-69, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25586180

RESUMO

The mechanism by which extracellular metabolites, including redox mediators and quorum-sensing signaling molecules, traffic through the extracellular matrix of biofilms is poorly explored. We hypothesize that functional amyloids, abundant in natural biofilms and possessing hydrophobic domains, retain these metabolites. Using surface plasmon resonance, we demonstrate that the quorum-sensing (QS) molecules, 2-heptyl-3-hydroxy-4(1H)-quinolone and N-(3-oxododecanoyl)-l-homoserine lactone, and the redox mediator pyocyanin bind with transient affinity to functional amyloids from Pseudomonas (Fap). Their high hydrophobicity predisposes them to signal-amyloid interactions, but specific interactions also play a role. Transient interactions allow for rapid association and dissociation kinetics, which make the QS molecules bioavailable and at the same time secure within the extracellular matrix as a consequence of serial bindings. Retention of the QS molecules was confirmed using Pseudomonas aeruginosa PAO1-based 2-heptyl-3-hydroxy-4(1H)-quinolone and N-(3-oxododecanoyl)-l-homoserine lactone reporter assays, showing that Fap fibrils pretreated with the QS molecules activate the reporters even after sequential washes. Pyocyanin retention was validated by electrochemical analysis of pyocyanin-pretreated Fap fibrils subjected to the same washing process. Results suggest that QS molecule-amyloid interactions are probably important in the turbulent environments commonly encountered in natural habitats.


Assuntos
Amiloide/química , Biofilmes , Pseudomonas aeruginosa/química , Percepção de Quorum/genética , 4-Butirolactona/análogos & derivados , 4-Butirolactona/química , Amiloide/metabolismo , Regulação Bacteriana da Expressão Gênica , Humanos , Dobramento de Proteína , Pseudomonas aeruginosa/genética
7.
Appl Environ Microbiol ; 80(24): 7758-70, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25304506

RESUMO

Epsilon-poly-l-lysine (ε-PL) is a natural antimicrobial cationic peptide which is generally regarded as safe (GRAS) as a food preservative. Although its antimicrobial activity is well documented, its mechanism of action is only vaguely described. The aim of this study was to clarify ε-PL's mechanism of action using Escherichia coli and Listeria innocua as model organisms. We examined ε-PL's effect on cell morphology and membrane integrity and used an array of E. coli deletion mutants to study how specific outer membrane components affected the action of ε-PL. We furthermore studied its interaction with lipid bilayers using membrane models. In vitro cell studies indicated that divalent cations and the heptose I and II phosphate groups in the lipopolysaccharide layer of E. coli are critical for ε-PL's binding efficiency. ε-PL removed the lipopolysaccharide layer and affected cell morphology of E. coli, while L. innocua underwent minor morphological changes. Propidium iodide staining showed that ε-PL permeabilized the cytoplasmic membrane in both species, indicating the membrane as the site of attack. We compared the interaction with neutral or negatively charged membrane systems and showed that the interaction with ε-PL relied on negative charges on the membrane. Suspended membrane vesicles were disrupted by ε-PL, and a detergent-like disruption of E. coli membrane was confirmed by atomic force microscopy imaging of supported lipid bilayers. We hypothesize that ε-PL destabilizes membranes in a carpet-like mechanism by interacting with negatively charged phospholipid head groups, which displace divalent cations and enforce a negative curvature folding on membranes that leads to formation of vesicles/micelles.


Assuntos
Antibacterianos/metabolismo , Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Listeria/metabolismo , Polilisina/metabolismo , Transporte Biológico , Membrana Celular/química , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Escherichia coli/química , Listeria/química , Listeria/efeitos dos fármacos , Polilisina/farmacologia
8.
J Mol Biol ; 430(8): 1116-1140, 2018 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-29524512

RESUMO

Numerous mutations in the corneal protein TGFBIp lead to opaque extracellular deposits and corneal dystrophies (CDs). Here we elucidate the molecular origins underlying TGFBIp's mutation-induced increase in aggregation propensity through comprehensive biophysical and bioinformatic analyses of mutations associated with every major subtype of TGFBIp-linked CDs including lattice corneal dystrophy (LCD) and three subtypes of granular corneal dystrophy (GCD 1-3). LCD mutations at buried positions in the C-terminal Fas1-4 domain lead to decreased stability. GCD variants show biophysical profiles distinct from those of LCD mutations. GCD 1 and 3 mutations reduce solubility rather than stability. Half of the 50 positions within Fas1-4 most sensitive to mutation are associated with at least one known disease-causing mutation, including 10 of the top 11 positions. Thus, TGFBIp aggregation is driven by mutations that despite their physico-chemical diversity target either the stability or solubility of Fas1-4 in predictable ways, suggesting straightforward general therapeutic strategies.


Assuntos
Distrofias Hereditárias da Córnea/genética , Proteínas da Matriz Extracelular/química , Proteínas da Matriz Extracelular/genética , Mutação , Fator de Crescimento Transformador beta/química , Fator de Crescimento Transformador beta/genética , Dicroísmo Circular , Predisposição Genética para Doença , Humanos , Modelos Moleculares , Domínios Proteicos , Estabilidade Proteica , Estrutura Secundária de Proteína , Solubilidade
9.
J Mol Biol ; 429(18): 2755-2764, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28739480

RESUMO

Glycosaminoglycans (GAGs) are related to multiple biological functions and diseases. There is growing evidence that GAG concentration and sulfate content increase with age. The destabilizing mutation A546T in the corneal protein TGFBIp leads to lattice-type corneal dystrophy, but symptoms only appear in the fourth decade of life. We hypothesize that this delayed phenotype can be explained by increased GAG sulfation over time. Using in vitro assays with the C-terminal TGFIBIp domain Fas1-4, previously shown to recapitulate many properties of full-length TGFBIp, we find that only long GAGs with multiple sulfate groups on each repeating unit increase the amount of worm-like aggregates and induce long, straight fibrils in A546T. In contrast, GAGs did not induce aggregation of wildtype Fas1-4, suggesting that the finding might be specific for lattice corneal dystrophy mutants. Our results highlight a possible role of changing GAG sulfation in the accumulation of amyloid, which also may have implications for the development of neurodegenerative diseases.


Assuntos
Amiloide/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Glicosaminoglicanos/metabolismo , Proteínas Mutantes/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Envelhecimento , Proteínas da Matriz Extracelular/genética , Humanos , Proteínas Mutantes/genética , Mutação Puntual , Fator de Crescimento Transformador beta/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA