Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
2.
Nature ; 546(7659): 485-491, 2017 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-28640263

RESUMO

Aerosols have a potentially large effect on climate, particularly through their interactions with clouds, but the magnitude of this effect is highly uncertain. Large volcanic eruptions produce sulfur dioxide, which in turn produces aerosols; these eruptions thus represent a natural experiment through which to quantify aerosol-cloud interactions. Here we show that the massive 2014-2015 fissure eruption in Holuhraun, Iceland, reduced the size of liquid cloud droplets-consistent with expectations-but had no discernible effect on other cloud properties. The reduction in droplet size led to cloud brightening and global-mean radiative forcing of around -0.2 watts per square metre for September to October 2014. Changes in cloud amount or cloud liquid water path, however, were undetectable, indicating that these indirect effects, and cloud systems in general, are well buffered against aerosol changes. This result will reduce uncertainties in future climate projections, because we are now able to reject results from climate models with an excessive liquid-water-path response.

3.
Proc Natl Acad Sci U S A ; 113(27): 7426-31, 2016 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-27313203

RESUMO

Using collocated measurements from geostationary and polar-orbital satellites over tropical continents, we provide a large-scale statistical assessment of the relative influence of aerosols and meteorological conditions on the lifetime of mesoscale convective systems (MCSs). Our results show that MCSs' lifetime increases by 3-24 h when vertical wind shear (VWS) and convective available potential energy (CAPE) are moderate to high and ambient aerosol optical depth (AOD) increases by 1 SD (1σ). However, this influence is not as strong as that of CAPE, relative humidity, and VWS, which increase MCSs' lifetime by 3-30 h, 3-27 h, and 3-30 h per 1σ of these variables and explain up to 36%, 45%, and 34%, respectively, of the variance of the MCSs' lifetime. AOD explains up to 24% of the total variance of MCSs' lifetime during the decay phase. This result is physically consistent with that of the variation of the MCSs' ice water content (IWC) with aerosols, which accounts for 35% and 27% of the total variance of the IWC in convective cores and anvil, respectively, during the decay phase. The effect of aerosols on MCSs' lifetime varies between different continents. AOD appears to explain up to 20-22% of the total variance of MCSs' lifetime over equatorial South America compared with 8% over equatorial Africa. Aerosols over the Indian Ocean can explain 20% of total variance of MCSs' lifetime over South Asia because such MCSs form and develop over the ocean. These regional differences of aerosol impacts may be linked to different meteorological conditions.

4.
Proc Natl Acad Sci U S A ; 113(21): 5781-90, 2016 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-27222566

RESUMO

The effect of an increase in atmospheric aerosol concentrations on the distribution and radiative properties of Earth's clouds is the most uncertain component of the overall global radiative forcing from preindustrial time. General circulation models (GCMs) are the tool for predicting future climate, but the treatment of aerosols, clouds, and aerosol-cloud radiative effects carries large uncertainties that directly affect GCM predictions, such as climate sensitivity. Predictions are hampered by the large range of scales of interaction between various components that need to be captured. Observation systems (remote sensing, in situ) are increasingly being used to constrain predictions, but significant challenges exist, to some extent because of the large range of scales and the fact that the various measuring systems tend to address different scales. Fine-scale models represent clouds, aerosols, and aerosol-cloud interactions with high fidelity but do not include interactions with the larger scale and are therefore limited from a climatic point of view. We suggest strategies for improving estimates of aerosol-cloud relationships in climate models, for new remote sensing and in situ measurements, and for quantifying and reducing model uncertainty.

5.
Sci Adv ; 8(14): eabn3488, 2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35385304

RESUMO

Predictions of the Earth system, such as weather forecasts and climate projections, require models informed by observations at many levels. Some methods for integrating models and observations are very systematic and comprehensive (e.g., data assimilation), and some are single purpose and customized (e.g., for model validation). We review current methods and best practices for integrating models and observations. We highlight how future developments can enable advanced heterogeneous observation networks and models to improve predictions of the Earth system (including atmosphere, land surface, oceans, cryosphere, and chemistry) across scales from weather to climate. As the community pushes to develop the next generation of models and data systems, there is a need to take a more holistic, integrated, and coordinated approach to models, observations, and their uncertainties to maximize the benefit for Earth system prediction and impacts on society.

6.
Proc Math Phys Eng Sci ; 476(2236): 20190458, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32398926

RESUMO

Progress towards achieving a quantitative understanding of the exchanges of water between Earth's main water reservoirs is reviewed with emphasis on advances accrued from the latest advances in Earth Observation from space. These exchanges of water between the reservoirs are a result of processes that are at the core of important physical Earth-system feedbacks, which fundamentally control the response of Earth's climate to the greenhouse gas forcing it is now experiencing, and are therefore vital to understanding the future evolution of Earth's climate. The changing nature of global mean sea level (GMSL) is the context for discussion of these exchanges. Different sources of satellite observations that are used to quantify ice mass loss and water storage over continents, how water can be tracked to its source using water isotope information and how the waters in different reservoirs influence the fluxes of water between reservoirs are described. The profound influence of Earth's hydrological cycle, including human influences on it, on the rate of GMSL rise is emphasized. The many intricate ways water cycle processes influence water exchanges between reservoirs and thus sea-level rise, including disproportionate influences by the tiniest water reservoirs, are emphasized.

7.
Nat Commun ; 8: 15771, 2017 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-28589940

RESUMO

The change of global-mean precipitation under global warming and interannual variability is predominantly controlled by the change of atmospheric longwave radiative cooling. Here we show that tightening of the ascending branch of the Hadley Circulation coupled with a decrease in tropical high cloud fraction is key in modulating precipitation response to surface warming. The magnitude of high cloud shrinkage is a primary contributor to the intermodel spread in the changes of tropical-mean outgoing longwave radiation (OLR) and global-mean precipitation per unit surface warming (dP/dTs) for both interannual variability and global warming. Compared to observations, most Coupled Model Inter-comparison Project Phase 5 models underestimate the rates of interannual tropical-mean dOLR/dTs and global-mean dP/dTs, consistent with the muted tropical high cloud shrinkage. We find that the five models that agree with the observation-based interannual dP/dTs all predict dP/dTs under global warming higher than the ensemble mean dP/dTs from the ∼20 models analysed in this study.

8.
J Geophys Res Atmos ; 121(9): 4468-4486, 2016 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-30027024

RESUMO

An intercomparison of high-latitude precipitation characteristics from observation-based and reanalysis products is performed. In particular the precipitation products from CloudSat provide an independent assessment to other widely used products, these being the observationally-based GPCP, GPCC and CMAP products and the ERA-Interim, MERRA and NCEP-DOE R2 reanalyses. Seasonal and annual total precipitation in both hemispheres poleward of 55° latitude is considered in all products, and CloudSat is used to assess intensity and frequency of precipitation occurrence by phase, defined as rain, snow or mixed phase. Furthermore, an independent estimate of snow accumulation during the cold season was calculated from the Gravity Recovery and Climate Experiment (GRACE). The intercomparison is performed for the 2007-2010 period when CloudSat was fully operational. It is found that ERA- Interim and MERRA are broadly similar, agreeing more closely with CloudSat over oceans. ERA-Interim also agrees well with CloudSat estimates of snowfall over Antarctica where total snowfall from GPCP and CloudSat is almost identical. A number of disagreements on regional or seasonal scales are identified: CMAP reports much lower ocean precipitation relative to other products, NCEP-DOE R2 reports much higher summer precipitation over northern hemisphere land, GPCP reports much higher snowfall over Eurasia, and CloudSat overestimates precipitation over Greenland, likely due to mischaracterization of rain and mixed-phase precipitation. These outliers are likely unrealistic for these specific regions and time periods. These estimates from observations and reanalyses provide useful insights for diagnostic assessment of precipitation products in high latitudes, quantifying the current uncertainties, improving the products, and establishing a benchmark for assessment of climate models.

9.
Science ; 302(5648): 1151-2; author reply 1151-2, 2003 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-14615515
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA