Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 20(8): e1012280, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39102434

RESUMO

The metabolism of phototrophic cyanobacteria is an integral part of global biogeochemical cycles, and the capability of cyanobacteria to assimilate atmospheric CO2 into organic carbon has manifold potential applications for a sustainable biotechnology. To elucidate the properties of cyanobacterial metabolism and growth, computational reconstructions of genome-scale metabolic networks play an increasingly important role. Here, we present an updated reconstruction of the metabolic network of the cyanobacterium Synechocystis sp. PCC 6803 and its quantitative evaluation using flux balance analysis (FBA). To overcome limitations of conventional FBA, and to allow for the integration of experimental analyses, we develop a novel approach to describe light absorption and light utilization within the framework of FBA. Our approach incorporates photoinhibition and a variable quantum yield into the constraint-based description of light-limited phototrophic growth. We show that the resulting model is capable of predicting quantitative properties of cyanobacterial growth, including photosynthetic oxygen evolution and the ATP/NADPH ratio required for growth and cellular maintenance. Our approach retains the computational and conceptual simplicity of FBA and is readily applicable to other phototrophic microorganisms.


Assuntos
Luz , Modelos Biológicos , Fotossíntese , Synechocystis , Synechocystis/metabolismo , Synechocystis/crescimento & desenvolvimento , Fotossíntese/fisiologia , Redes e Vias Metabólicas , Análise do Fluxo Metabólico , Biologia Computacional , Cianobactérias/metabolismo , Cianobactérias/crescimento & desenvolvimento , Cianobactérias/fisiologia , Simulação por Computador
2.
Bioessays ; 45(10): e2300015, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37559168

RESUMO

Microbial systems biology has made enormous advances in relating microbial physiology to the underlying biochemistry and molecular biology. By meticulously studying model microorganisms, in particular Escherichia coli and Saccharomyces cerevisiae, increasingly comprehensive computational models predict metabolic fluxes, protein expression, and growth. The modeling rationale is that cells are constrained by a limited pool of resources that they allocate optimally to maximize fitness. As a consequence, the expression of particular proteins is at the expense of others, causing trade-offs between cellular objectives such as instantaneous growth, stress tolerance, and capacity to adapt to new environments. While current computational models are remarkably predictive for E. coli and S. cerevisiae when grown in laboratory environments, this may not hold for other growth conditions and other microorganisms. In this contribution, we therefore discuss the relationship between the instantaneous growth rate, limited resources, and long-term fitness. We discuss uses and limitations of current computational models, in particular for rapidly changing and adverse environments, and propose to classify microbial growth strategies based on Grimes's CSR framework.


Assuntos
Escherichia coli , Saccharomyces cerevisiae , Escherichia coli/genética , Saccharomyces cerevisiae/metabolismo , Simulação por Computador , Modelos Biológicos
3.
Mol Syst Biol ; 17(12): e10504, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34928538

RESUMO

One long-standing question in microbiology is how microbes buffer perturbations in energy metabolism. In this study, we systematically analyzed the impact of different levels of ATP demand in Escherichia coli under various conditions (aerobic and anaerobic, with and without cell growth). One key finding is that, under all conditions tested, the glucose uptake increases with rising ATP demand, but only to a critical level beyond which it drops markedly, even below wild-type levels. Focusing on anaerobic growth and using metabolomics and proteomics data in combination with a kinetic model, we show that this biphasic behavior is induced by the dual dependency of the phosphofructokinase on ATP (substrate) and ADP (allosteric activator). This mechanism buffers increased ATP demands by a higher glycolytic flux but, as shown herein, it collapses under very low ATP concentrations. Model analysis also revealed two major rate-controlling steps in the glycolysis under high ATP demand, which could be confirmed experimentally. Our results provide new insights on fundamental mechanisms of bacterial energy metabolism and guide the rational engineering of highly productive cell factories.


Assuntos
Trifosfato de Adenosina , Escherichia coli , Trifosfato de Adenosina/metabolismo , Metabolismo Energético , Escherichia coli/genética , Escherichia coli/metabolismo , Glicólise
4.
Biotechnol Bioeng ; 119(8): 2261-2267, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35475579

RESUMO

Fast-growing cyanobacterial and microalgal strains are considered to be a promising resource to overcome current productivity barriers of phototrophic cultivation. The purpose of this communication, however, is to argue that a high maximal growth rate itself is not a sufficient or necessary property for high phototrophic productivity. Rather, the light-limited specific growth rate of a phototrophic microorganism is a product of several factors, including the rate of light absorption, the photosynthetic efficiency, and the maximal biomass yield per mol photons. It is suggested that, in addition to the maximal growth rate, reports on fast-growing strains should also assess photosynthetic efficiency and maximal biomass yield as predictors of culture productivity. The arguments within the communication are underpinned by a theoretical analysis of a light-limited chemostat, compared to its heterotrophic counterpart. It is shown that for the light-limited chemostat maximal productivity occurs at low dilution rates.


Assuntos
Cianobactérias , Microalgas , Biomassa , Processos Heterotróficos , Fotossíntese
5.
PLoS Genet ; 14(3): e1007239, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29522508

RESUMO

Cyanobacteria are a monophyletic phylogenetic group of global importance and have received considerable attention as potential host organisms for the renewable synthesis of chemical bulk products from atmospheric CO2. The cyanobacterial phylum exhibits enormous metabolic diversity with respect to morphology, lifestyle and habitat. As yet, however, research has mostly focused on few model strains and cyanobacterial diversity is insufficiently understood. In this respect, the increasing availability of fully sequenced bacterial genomes opens new and unprecedented opportunities to investigate the genetic inventory of organisms in the context of their pan-genome. Here, we seek understand cyanobacterial diversity using a comparative genome analysis of 77 fully sequenced and assembled cyanobacterial genomes. We use phylogenetic profiling to analyze the co-occurrence of clusters of likely ortholog genes (CLOGs) and reveal novel functional associations between CLOGs that are not captured by co-localization of genes. Going beyond pair-wise co-occurrences, we propose a network approach that allows us to identify modules of co-occurring CLOGs. The extracted modules exhibit a high degree of functional coherence and reveal known as well as previously unknown functional associations. We argue that the high functional coherence observed for the modules is a consequence of the similar-yet-diverse nature of cyanobacteria. Our approach highlights the importance of a multi-strain analysis to understand gene functions and environmental adaptations, with implications beyond the cyanobacterial phylum. The analysis is augmented with a simple toolbox that facilitates further analysis to investigate the co-occurrence neighborhood of specific CLOGs of interest.


Assuntos
Proteínas de Bactérias/genética , Cianobactérias/genética , Genoma Bacteriano , Proteínas de Bactérias/metabolismo , Redes Reguladoras de Genes , Anotação de Sequência Molecular , Família Multigênica , Filogenia
6.
Proc Natl Acad Sci U S A ; 114(31): E6457-E6465, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28720699

RESUMO

Cyanobacteria are an integral part of Earth's biogeochemical cycles and a promising resource for the synthesis of renewable bioproducts from atmospheric CO2 Growth and metabolism of cyanobacteria are inherently tied to the diurnal rhythm of light availability. As yet, however, insight into the stoichiometric and energetic constraints of cyanobacterial diurnal growth is limited. Here, we develop a computational framework to investigate the optimal allocation of cellular resources during diurnal phototrophic growth using a genome-scale metabolic reconstruction of the cyanobacterium Synechococcus elongatus PCC 7942. We formulate phototrophic growth as an autocatalytic process and solve the resulting time-dependent resource allocation problem using constraint-based analysis. Based on a narrow and well-defined set of parameters, our approach results in an ab initio prediction of growth properties over a full diurnal cycle. The computational model allows us to study the optimality of metabolite partitioning during diurnal growth. The cyclic pattern of glycogen accumulation, an emergent property of the model, has timing characteristics that are in qualitative agreement with experimental findings. The approach presented here provides insight into the time-dependent resource allocation problem of phototrophic diurnal growth and may serve as a general framework to assess the optimality of metabolic strategies that evolved in phototrophic organisms under diurnal conditions.

7.
J Exp Bot ; 70(3): 973-983, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30371804

RESUMO

Biological fixation of atmospheric CO2 via the Calvin-Benson-Bassham cycle has massive ecological impact and offers potential for industrial exploitation, either by improving carbon fixation in plants and autotrophic bacteria, or by installation into new hosts. A kinetic model of the Calvin-Benson-Bassham cycle embedded in the central carbon metabolism of the cyanobacterium Synechocystis sp. PCC 6803 was developed to investigate its stability and underlying control mechanisms. To reduce the uncertainty associated with a single parameter set, random sampling of the steady-state metabolite concentrations and the enzyme kinetic parameters was employed, resulting in millions of parameterized models which were analyzed for flux control and stability against perturbation. Our results show that the Calvin cycle had an overall high intrinsic stability, but a high concentration of ribulose 1,5-bisphosphate was associated with unstable states. Low substrate saturation and high product saturation of enzymes involved in highly interconnected reactions correlated with increased network stability. Flux control, that is the effect that a change in one reaction rate has on the other reactions in the network, was distributed and mostly exerted by energy supply (ATP), but also by cofactor supply (NADPH). Sedoheptulose 1,7-bisphosphatase/fructose 1,6-bisphosphatase, fructose-bisphosphate aldolase, and transketolase had a weak but positive effect on overall network flux, in agreement with published observations. The identified flux control and relationships between metabolite concentrations and system stability can guide metabolic engineering. The kinetic model structure and parameterizing framework can be expanded for analysis of metabolic systems beyond the Calvin cycle.


Assuntos
Ciclo do Carbono , Metaboloma , Fotossíntese/fisiologia , Synechocystis/fisiologia , Cinética , Modelos Biológicos
8.
Microb Cell Fact ; 18(1): 165, 2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31601201

RESUMO

BACKGROUND: Cyanobacteria and other phototrophic microorganisms allow to couple the light-driven assimilation of atmospheric [Formula: see text] directly to the synthesis of carbon-based products, and are therefore attractive platforms for microbial cell factories. While most current engineering efforts are performed using small-scale laboratory cultivation, the economic viability of phototrophic cultivation also crucially depends on photobioreactor design and culture parameters, such as the maximal areal and volumetric productivities. Based on recent insights into the cyanobacterial cell physiology and the resulting computational models of cyanobacterial growth, the aim of this study is to investigate the limits of cyanobacterial productivity in continuous culture with light as the limiting nutrient. RESULTS: We integrate a coarse-grained model of cyanobacterial growth into a light-limited chemostat and its heterogeneous light gradient induced by self-shading of cells. We show that phototrophic growth in the light-limited chemostat can be described using the concept of an average light intensity. Different from previous models based on phenomenological growth equations, our model provides a mechanistic link between intracellular protein allocation, population growth and the resulting reactor productivity. Our computational framework thereby provides a novel approach to investigate and predict the maximal productivity of phototrophic cultivation, and identifies optimal proteome allocation strategies for developing maximally productive strains. CONCLUSIONS: Our results have implications for efficient phototrophic cultivation and the design of maximally productive phototrophic cell factories. The model predicts that the use of dense cultures in well-mixed photobioreactors with short light-paths acts as an effective light dilution mechanism and alleviates the detrimental effects of photoinhibition even under very high light intensities. We recover the well-known trade-offs between a reduced light-harvesting apparatus and increased population density. Our results are discussed in the context of recent experimental efforts to increase the yield of phototrophic cultivation.


Assuntos
Cianobactérias/crescimento & desenvolvimento , Microalgas/crescimento & desenvolvimento , Fotobiorreatores , Luz , Modelos Biológicos , Processos Fototróficos
9.
Plant Physiol ; 173(1): 509-523, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27899536

RESUMO

Anabaena sp. PCC 7120 is a nitrogen-fixing filamentous cyanobacterium. Under nitrogen-limiting conditions, a fraction of the vegetative cells in each filament terminally differentiate to nongrowing heterocysts. Heterocysts are metabolically and structurally specialized to enable O2-sensitive nitrogen fixation. The functionality of the filament, as an association of vegetative cells and heterocysts, is postulated to depend on metabolic exchange of electrons, carbon, and fixed nitrogen. In this study, we compile and evaluate a comprehensive curated stoichiometric model of this two-cell system, with the objective function based on the growth of the filament under diazotrophic conditions. The predicted growth rate under nitrogen-replete and -deplete conditions, as well as the effect of external carbon and nitrogen sources, was thereafter verified. Furthermore, the model was utilized to comprehensively evaluate the optimality of putative metabolic exchange reactions between heterocysts and vegetative cells. The model suggested that optimal growth requires at least four exchange metabolites. Several combinations of exchange metabolites resulted in predicted growth rates that are higher than growth rates achieved by only considering exchange of metabolites previously suggested in the literature. The curated model of the metabolic network of Anabaena sp. PCC 7120 enhances our ability to understand the metabolic organization of multicellular cyanobacteria and provides a platform for further study and engineering of their metabolism.


Assuntos
Anabaena/citologia , Anabaena/genética , Modelos Biológicos , Anabaena/metabolismo , Biomassa , Carbono/metabolismo , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Fixação de Nitrogênio
10.
Microbiology (Reading) ; 163(5): 731-744, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28516845

RESUMO

Cyanobacteria are ubiquitous photoautotrophs that assimilate atmospheric CO2 as their main source of carbon. Several cyanobacteria are known to be facultative heterotrophs that are able to grow on diverse carbon sources. For selected strains, assimilation of organic acids and mixotrophic growth on acetate has been reported for decades. However, evidence for the existence of a functional glyoxylate shunt in cyanobacteria has long been contradictory and unclear. Genes coding for isocitrate lyase (ICL) and malate synthase were recently identified in two strains of the genus Cyanothece, and the existence of the complete glyoxylate shunt was verified in a strain of Chlorogloeopsis fritschii. Here, we report that the gene PCC7424_4054 of the strain Cyanothece sp. PCC 7424 encodes an enzymatically active protein that catalyses the reaction of ICL, an enzyme that is specific for the glyoxylate shunt. We demonstrate that ICL activity is induced under alternating day/night cycles and acetate-supplemented cultures exhibit enhanced growth. In contrast, growth under constant light did not result in any detectable ICL activity or enhanced growth of acetate-supplemented cultures. Furthermore, our results indicate that, despite the presence of a glyoxylate shunt, acetate does not support continued heterotrophic growth and cell proliferation. The functional validation of the ICL is supplemented with a bioinformatics analysis of enzymes that co-occur with the glyoxylate shunt. We hypothesize that the glyoxylate shunt in Cyanothece sp. PCC 7424, and possibly other nitrogen-fixing cyanobacteria, is an adaptation to a specific ecological niche and supports assimilation of nitrogen or organic compounds during the night phase.


Assuntos
Acetatos/metabolismo , Cyanothece/enzimologia , Cyanothece/crescimento & desenvolvimento , Glioxilatos/metabolismo , Processos Heterotróficos/genética , Isocitrato Liase/genética , Proliferação de Células/fisiologia , Cyanothece/genética , Cyanothece/metabolismo , Malato Sintase/genética , Fotoperíodo
11.
PLoS Comput Biol ; 12(12): e1005298, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28027301

RESUMO

Oscillations occur in a wide variety of cellular processes, for example in calcium and p53 signaling responses, in metabolic pathways or within gene-regulatory networks, e.g. the circadian system. Since it is of central importance to understand the influence of perturbations on the dynamics of these systems a number of experimental and theoretical studies have examined their robustness. The period of circadian oscillations has been found to be very robust and to provide reliable timing. For intracellular calcium oscillations the period has been shown to be very sensitive and to allow for frequency-encoded signaling. We here apply a comprehensive computational approach to study the robustness of period and amplitude of oscillatory systems. We employ different prototype oscillator models and a large number of parameter sets obtained by random sampling. This framework is used to examine the effect of three design principles on the sensitivities towards perturbations of the kinetic parameters. We find that a prototype oscillator with negative feedback has lower period sensitivities than a prototype oscillator relying on positive feedback, but on average higher amplitude sensitivities. For both oscillator types, the use of Michaelis-Menten instead of mass action kinetics in all degradation and conversion reactions leads to an increase in period as well as amplitude sensitivities. We observe moderate changes in sensitivities if replacing mass conversion reactions by purely regulatory reactions. These insights are validated for a set of established models of various cellular rhythms. Overall, our work highlights the importance of reaction kinetics and feedback type for the variability of period and amplitude and therefore for the establishment of predictive models.


Assuntos
Relógios Biológicos/fisiologia , Sinalização do Cálcio/fisiologia , Fenômenos Fisiológicos Celulares , Ritmo Circadiano/fisiologia , Modelos Biológicos , Oscilometria/métodos , Animais , Simulação por Computador , Humanos , Cinética
12.
Microbiology (Reading) ; 161(Pt 5): 1050-1060, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25701735

RESUMO

L-serine is one of the proteinogenic amino acids and participates in several essential processes in all organisms. In plants, the light-dependent photorespiratory and the light-independent phosphoserine pathways contribute to serine biosynthesis. In cyanobacteria, the light-dependent photorespiratory pathway for serine synthesis is well characterized, but the phosphoserine pathway has not been identified. Here, we investigated three candidate genes for enzymes of the phosphoserine pathway in Synechocystis sp. PCC 6803. Only the gene for the D-3-phosphoglycerate dehydrogenase is correctly annotated in the genome database, whereas the 3-phosphoserine transaminase and 3-phosphoserine phosphatase (PSP) proteins are incorrectly annotated and were identified here. All enzymes were obtained as recombinant proteins and showed the activities necessary to catalyse the three-step phosphoserine pathway. The genes coding for the phosphoserine pathway were found in most cyanobacterial genomes listed in CyanoBase. The pathway seems to be essential for cyanobacteria, because it was impossible to mutate the gene coding for PSP in Synechocystis sp. PCC 6803 or in Synechococcus elongatus PCC 7942. A model approach indicates a 30-60% contribution of the phosphoserine pathway to the overall serine pool. Hence, this study verified that cyanobacteria, similar to plants, use the phosphoserine pathway in addition to photorespiration for serine biosynthesis.


Assuntos
Luz , Redes e Vias Metabólicas , Fosfosserina/metabolismo , Serina/metabolismo , Synechocystis/fisiologia , Sequência de Aminoácidos , Ativação Enzimática , Regulação Enzimológica da Expressão Gênica , Dados de Sequência Molecular , Fosfoglicerato Desidrogenase/genética , Fosfoglicerato Desidrogenase/metabolismo , Alinhamento de Sequência , Especificidade por Substrato
13.
Biochem Soc Trans ; 43(6): 1195-200, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26614660

RESUMO

Based on recent theoretical results on optimal flux distributions in kinetic metabolic networks, we explore the congruences and differences between solutions of kinetic optimization problems and results obtained by constraint-based methods. We demonstrate that, for a certain resource allocation problem, kinetic optimization and standard flux balance analysis (FBA) give rise to qualitatively different results. Furthermore, we introduce a variant of FBA, called satFBA, whose predictions are in qualitative agreement with kinetic optimization.


Assuntos
Algoritmos , Análise do Fluxo Metabólico/métodos , Redes e Vias Metabólicas , Modelos Biológicos , Simulação por Computador , Cinética , Reprodutibilidade dos Testes
14.
J Theor Biol ; 347: 182-90, 2014 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-24295962

RESUMO

The survival and proliferation of cells and organisms require a highly coordinated allocation of cellular resources to ensure the efficient synthesis of cellular components. In particular, the total enzymatic capacity for cellular metabolism is limited by finite resources that are shared between all enzymes, such as cytosolic space, energy expenditure for amino-acid synthesis, or micro-nutrients. While extensive work has been done to study constrained optimization problems based only on stoichiometric information, mathematical results that characterize the optimal flux in kinetic metabolic networks are still scarce. Here, we study constrained enzyme allocation problems with general kinetics, using the theory of oriented matroids. We give a rigorous proof for the fact that optimal solutions of the non-linear optimization problem are elementary flux modes. This finding has significant consequences for our understanding of optimality in metabolic networks as well as for the identification of metabolic switches and the computation of optimal flux distributions in kinetic metabolic networks.


Assuntos
Metabolismo , Modelos Teóricos , Cinética
15.
PLoS Comput Biol ; 9(6): e1003081, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23843751

RESUMO

Cyanobacteria are versatile unicellular phototrophic microorganisms that are highly abundant in many environments. Owing to their capability to utilize solar energy and atmospheric carbon dioxide for growth, cyanobacteria are increasingly recognized as a prolific resource for the synthesis of valuable chemicals and various biofuels. To fully harness the metabolic capabilities of cyanobacteria necessitates an in-depth understanding of the metabolic interconversions taking place during phototrophic growth, as provided by genome-scale reconstructions of microbial organisms. Here we present an extended reconstruction and analysis of the metabolic network of the unicellular cyanobacterium Synechocystis sp. PCC 6803. Building upon several recent reconstructions of cyanobacterial metabolism, unclear reaction steps are experimentally validated and the functional consequences of unknown or dissenting pathway topologies are discussed. The updated model integrates novel results with respect to the cyanobacterial TCA cycle, an alleged glyoxylate shunt, and the role of photorespiration in cellular growth. Going beyond conventional flux-balance analysis, we extend the computational analysis to diurnal light/dark cycles of cyanobacterial metabolism.


Assuntos
Redes e Vias Metabólicas , Synechocystis/metabolismo , Ciclo do Ácido Cítrico , Escuridão , Glioxilatos/metabolismo , Processos Fototróficos , Ribulose-Bifosfato Carboxilase/metabolismo , Synechocystis/enzimologia , Synechocystis/crescimento & desenvolvimento
16.
Microb Cell Fact ; 13: 128, 2014 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-25323065

RESUMO

BACKGROUND: Cyanobacteria are increasingly recognized as promising cell factories for the production of renewable biofuels and chemical feedstocks from sunlight, CO2, and water. However, most biotechnological applications of these organisms are still characterized by low yields. Increasing the production performance of cyanobacteria remains therefore a crucial step. RESULTS: In this work we use a stoichiometric network model of Synechocystis sp. PCC 6803 in combination with CASOP and minimal cut set analysis to systematically identify and characterize suitable strain design strategies for biofuel synthesis, specifically for ethanol and isobutanol. As a key result, improving upon other works, we demonstrate that higher-order knockout strategies exist in the model that lead to coupling of growth with high-yield biofuel synthesis under phototrophic conditions. Enumerating all potential knockout strategies (cut sets) reveals a unifying principle behind the identified strain designs, namely to reduce the ratio of ATP to NADPH produced by the photosynthetic electron transport chain. Accordingly, suitable knockout strategies seek to block cyclic and other alternate electron flows, such that ATP and NADPH are exclusively synthesized via the linear electron flow whose ATP/NADPH ratio is below that required for biomass synthesis. The products of interest are then utilized by the cell as sinks for reduction equivalents in excess. Importantly, the calculated intervention strategies do not rely on the assumption of optimal growth and they ensure that maintenance metabolism in the absence of light remains feasible. Our analyses furthermore suggest that a moderately increased ATP turnover, realized, for example, by ATP futile cycles or other ATP wasting mechanisms, represents a promising target to achieve increased biofuel yields. CONCLUSION: Our study reveals key principles of rational metabolic engineering strategies in cyanobacteria towards biofuel production. The results clearly show that achieving obligatory coupling of growth and product synthesis in photosynthetic bacteria requires fundamentally different intervention strategies compared to heterotrophic organisms.


Assuntos
Biocombustíveis/microbiologia , Biotecnologia/métodos , Simulação por Computador , Cianobactérias/metabolismo , Trifosfato de Adenosina/metabolismo , Butanóis/metabolismo , Cianobactérias/genética , Transporte de Elétrons , Etanol/metabolismo , Técnicas de Inativação de Genes , Genoma Bacteriano , Modelos Genéticos , NADP/metabolismo
17.
BMC Bioinformatics ; 14: 133, 2013 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-23601192

RESUMO

BACKGROUND: The transcriptomes of several cyanobacterial strains have been shown to exhibit diurnal oscillation patterns, reflecting the diurnal phototrophic lifestyle of the organisms. The analysis of such genome-wide transcriptional oscillations is often facilitated by the use of clustering algorithms in conjunction with a number of pre-processing steps. Biological interpretation is usually focussed on the time and phase of expression of the resulting groups of genes. However, the use of microarray technology in such studies requires the normalization of pre-processing data, with unclear impact on the qualitative and quantitative features of the derived information on the number of oscillating transcripts and their respective phases. RESULTS: A microarray based evaluation of diurnal expression in the cyanobacterium Synechocystis sp. PCC 6803 is presented. As expected, the temporal expression patterns reveal strong oscillations in transcript abundance. We compare the Fourier transformation-based expression phase before and after the application of quantile normalization, median polishing, cyclical LOESS, and least oscillating set (LOS) normalization. Whereas LOS normalization mostly preserves the phases of the raw data, the remaining methods introduce systematic biases. In particular, quantile-normalization is found to introduce a phase-shift of 180°, effectively changing night-expressed genes into day-expressed ones. Comparison of a large number of clustering results of differently normalized data shows that the normalization method determines the result. Subsequent steps, such as the choice of data transformation, similarity measure, and clustering algorithm, only play minor roles. We find that the standardization and the DTF transformation are favorable for the clustering of time series in contrast to the 12 m transformation. We use the cluster-wise functional enrichment of a clustering derived by LOS normalization, clustering using flowClust, and DFT transformation to derive the diurnal biological program of Synechocystis sp.. CONCLUSION: Application of quantile normalization, median polishing, and also cyclic LOESS normalization of the presented cyanobacterial dataset lead to increased numbers of oscillating genes and the systematic shift of the expression phase. The LOS normalization minimizes the observed detrimental effects. As previous analyses employed a variety of different normalization methods, a direct comparison of results must be treated with caution.


Assuntos
Ritmo Circadiano/genética , Cianobactérias/genética , Perfilação da Expressão Gênica/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Algoritmos , Análise por Conglomerados , Cianobactérias/metabolismo
18.
Bioresour Technol ; 380: 129068, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37084984

RESUMO

Engineering cyanobacteria for the production of isoprene and other terpenoids has gained increasing attention in the field of biotechnology. Several studies have addressed optimization of isoprene synthesis in cyanobacteria via enzyme and pathway engineering. However, only little attention has been paid to the optimization of cultivation conditions. In this study, an isoprene-producing strain of Synechocystis sp. PCC 6803 and two control strains were grown under a variety of cultivation conditions. Isoprene production, as quantified by modified membrane inlet mass spectrometer (MIMS) and interpreted using Flux Balance Analysis (FBA), increased under violet light and at elevated temperature. Increase of thermotolerance in the isoprene producer was attributed to the physical presence of isoprene, similar to plants. The results demonstrate a beneficial effect of isoprene on cell survival at higher temperatures. This increased thermotolerance opens new possibilities for sustainable bio-production of isoprene and other products.


Assuntos
Synechocystis , Synechocystis/metabolismo , Temperatura , Hemiterpenos/metabolismo , Butadienos/metabolismo
19.
BMC Genomics ; 13: 56, 2012 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-22300633

RESUMO

BACKGROUND: Cyanobacteria are among the most abundant organisms on Earth and represent one of the oldest and most widespread clades known in modern phylogenetics. As the only known prokaryotes capable of oxygenic photosynthesis, cyanobacteria are considered to be a promising resource for renewable fuels and natural products. Our efforts to harness the sun's energy using cyanobacteria would greatly benefit from an increased understanding of the genomic diversity across multiple cyanobacterial strains. In this respect, the advent of novel sequencing techniques and the availability of several cyanobacterial genomes offers new opportunities for understanding microbial diversity and metabolic organization and evolution in diverse environments. RESULTS: Here, we report a whole genome comparison of multiple phototrophic cyanobacteria. We describe genetic diversity found within cyanobacterial genomes, specifically with respect to metabolic functionality. Our results are based on pair-wise comparison of protein sequences and concomitant construction of clusters of likely ortholog genes. We differentiate between core, shared and unique genes and show that the majority of genes are associated with a single genome. In contrast, genes with metabolic function are strongly overrepresented within the core genome that is common to all considered strains. The analysis of metabolic diversity within core carbon metabolism reveals parts of the metabolic networks that are highly conserved, as well as highly fragmented pathways. CONCLUSIONS: Our results have direct implications for resource allocation and further sequencing projects. It can be extrapolated that the number of newly identified genes still significantly increases with increasing number of new sequenced genomes. Furthermore, genome analysis of multiple phototrophic strains allows us to obtain a detailed picture of metabolic diversity that can serve as a starting point for biotechnological applications and automated metabolic reconstructions.


Assuntos
Cianobactérias/genética , Cianobactérias/metabolismo , Variação Genética/genética , Genoma Bacteriano/genética , Processos Fototróficos/genética , Adaptação Fisiológica/genética , Códon/genética , Códon/metabolismo , Cianobactérias/fisiologia , Meio Ambiente , Evolução Molecular , Redes e Vias Metabólicas/genética , Família Multigênica/genética , Filogenia , Homologia de Sequência do Ácido Nucleico
20.
J Exp Bot ; 63(6): 2259-74, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22450165

RESUMO

Cyanobacteria are phototrophic microorganisms of global importance and have recently attracted increasing attention due to their capability to convert sunlight and atmospheric CO(2) directly into organic compounds, including carbon-based biofuels. The utilization of cyanobacteria as a biological chassis to generate third-generation biofuels would greatly benefit from an increased understanding of cyanobacterial metabolism and its interplay with other cellular processes. In this respect, metabolic modelling has been proposed as a way to overcome the traditional trial and error methodology that is often employed to introduce novel pathways. In particular, flux balance analysis and related methods have proved to be powerful tools to investigate the organization of large-scale metabolic networks-with the prospect of predicting modifications that are likely to increase the yield of a desired product and thereby to streamline the experimental progress and avoid futile avenues. This contribution seeks to describe the utilization of metabolic modelling as a research tool to understand the metabolism and phototrophic growth of cyanobacteria. The focus of the contribution is on a mathematical description of the metabolic network of Synechocystis sp. PCC 6803 and its analysis using constraint-based methods. A particular challenge is to integrate the description of the metabolic network with other cellular processes, such as the circadian clock, the photosynthetic light reactions, carbon concentration mechanism, and transcriptional regulation-aiming at a predictive model of a cyanobacterium in silico.


Assuntos
Redes e Vias Metabólicas , Modelos Biológicos , Processos Fototróficos/fisiologia , Synechocystis/crescimento & desenvolvimento , Synechocystis/metabolismo , Biocombustíveis , Ecossistema , Cinética , Fotossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA