Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Pharm Res ; 40(12): 2847-2858, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37505378

RESUMO

PURPOSE: To investigate the production and physical stability of coamorphous materials (CAM) of naringenin (NAR) and coformers-caffeine, theophylline or theobromine (CAF/THY/THE, respectively). We independently assessed the impact of moisture and temperature on the physical stability of CAMs, and transformation products after destabilization were examined. METHODS: Neat grinding, liquid assisted grinding and water slurry were selected to prepare multi-component materials with NAR and CAF, THY or THE. The physical stability of CAMs was investigated at 65°C/<10%RH, 21°C/85% RH and 21°C/<10% RH. Differential scanning calorimetry (DSC) and powder X-ray diffraction (PXRD) were employed to monitor for recrystallization during the stability studies. Glass forming ability of amorphous NAR was assessed to understand CAM formation and physical stability. RESULTS: NAR:THY and NAR:THE CAMs showed physical stability for approximately nine months, under 21°C/<10% RH while NAR:CAF CAMs destabilized in 2.5 weeks. All CAMs recrystallized within a week at 65°C/<10%RH, and the physical stability at 21°C/85% RH was in the order of - NAR:THY > NAR:THE > NAR:CAF. NAR:THY produced 1:1 cocrystal under all storage conditions, while NAR:CAF destabilized to a 1:1 cocrystal at high RH but a physical mixture at high temperature. NAR:THE was found to recrystallize as a physical mixture in all conditions. NAR was found to be strong glass, with moderate kinetic fragility and good glass forming ability. CONCLUSION: Five naringenin-based multi-component solids were generated in this study: 3 new CAMs, 1 new cocrystal, and 1 previously reported cocrystal. Destabilization of CAMs was found to be exposure specific and coformer dependent.


Assuntos
Cafeína , Teofilina , Teofilina/química , Teobromina , Cristalização , Varredura Diferencial de Calorimetria , Difração de Raios X , Estabilidade de Medicamentos , Solubilidade
2.
Mol Pharm ; 17(1): 21-31, 2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31756102

RESUMO

The 1:1 caffeine (CAF) and 3-nitrobenzoic acid (NBA) cocrystal (CAF:NBA) displays polymorphism. Each polymorph shares the same docking synthon that connects individual CAF and NBA molecules within the asymmetric unit; however, the extended intermolecular interactions are significantly different between the two polymorphic modifications. These alternative interaction topologies translate to distinct structural motifs, mechanical properties, and compaction performance. To assist our molecular interpretation of the structure-mechanics-performance relationships for these cocrystal polymorphs, we combine powder Brillouin light scattering (p-BLS) to determine the mechanical properties with energy frameworks calculations to identify potentially available slip systems that may facilitate plastic deformation. The previously reported Form 1 for CAF:NBA adopts a 2D-layered crystal structure with a conventional 3.4 Å layer-to-layer separation distance. For Form 2, a columnar structure of 1D-tapes is displayed with CAF:NBA dimers running parallel to the (110) crystallographic direction. Consistent with the layered crystal structure, the shear modulus for Form 1 is significantly reduced relative to Form 2, and moreover, our p-BLS spectra for Form 1 clearly display the presence of low-velocity shear modes, which support the expectation of a low-energy slip system available for facile plastic deformation. Our energy frameworks calculations confirm that Form 1 displays a favorable slip system for plastic deformation. Combining our experimental and computational data indicates that the structural organization in Form 1 of CAF:NBA improves the compressibility and plasticity of the material, and from our tabletability studies, each of these contributions confers superior tableting performance to that of Form 1. Overall, mechanical and energy framework data permit a clear interpretation of the functional performance of polymorphic solids. This could serve as a robust screening approach for early pharmaceutical solid form selection and development.


Assuntos
Cafeína/química , Nitrobenzoatos/química , Química Computacional , Cristalização , Luz , Ciência dos Materiais , Simulação de Acoplamento Molecular , Porosidade/efeitos da radiação , Pós/química , Espalhamento de Radiação , Relação Estrutura-Atividade , Comprimidos/química , Resistência à Tração/efeitos da radiação , Termodinâmica
3.
Pharm Res ; 36(10): 150, 2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-31428879

RESUMO

PURPOSE: The unconventional tabletability of the indomethacin polymorphs - α and γ - are investigated from a topological and mechanical perspective using powder Brillouin light scattering (p-BLS) to identify the specific structure-performance relationship in these materials. METHOD: Indomethacin (γ-form) was purchased and used to prepare the α polymorph. Powder X-ray diffraction was used to confirm phase identity, while p-BLS was used to obtain the mechanical properties. Energy frameworks were determined with Crystal Explorer to visualize the interaction topologies. Using a Carver press and a stress-strain analyzer, the tableting performance of each polymorph was determined. RESULTS: Polymorph-specific acoustic frequency distributions were observed with distinct, zero-porosity, aggregate elastic moduli determined. The p-BLS spectra for α-indomethacin display a population of low-velocity shear modes, indicating a direction of facilitated shear. This improves slip-mediated plasticity and tabletability. Our p-BLS spectra experimentally indicates that a low-energy slip system is available to α-indomethacin which supports ours and previous energy framework calculations. Despite a 2d-layered crystal motif favorable for shear deformation, the γ-form displays a higher shear modulus that is supported by our hydrogen-bonding analysis of γ-indomethacin. CONCLUSION: Our experimental, mechanical data is consistent with the predicted interaction topologies and these two inputs combined permit a comprehensive, molecular understanding of polymorph-specific tabletability.


Assuntos
Indometacina/química , Cristalização , Dimerização , Composição de Medicamentos , Ligação de Hidrogênio , Luz , Fenômenos Mecânicos , Porosidade , Pós , Espalhamento de Radiação , Comprimidos , Termodinâmica
4.
AAPS PharmSciTech ; 20(3): 109, 2019 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-30746575

RESUMO

Brillouin light scattering (BLS), a technique theoretically described nearly a century back by the French physicist Léon Brillouin in 1922, is a light-scattering method for determining the mechanical properties of materials. This inelastic scattering method is described by the Bragg diffraction of light from a propagating fluctuation in the local dielectric. These fluctuations arise spontaneously from thermally populated sound waves intrinsic to all materials, and thus BLS may be broadly applied to transparent samples of any phase. This review begins with a brief historical overview of the development of BLS, from its theoretical prediction to the current state of the art, and notes specific technological advancements that enabled the development of BLS. Despite the broad utility of BLS, no commercial spectrometer is currently available for purchase, but rather individual components are assembled to suit a specific application. Central to any BLS spectrometer is the interferometer, and its performance characteristics-scanning or non-scanning, multi-passing, and stabilization-are critical considerations for spectrometer design. Consistent with any light-scattering method, the frequency shift is a key observable in BLS, and we summarize the connection of this measurement to evaluate the mechanical properties of materials. With emphasis toward pharmaceutical materials analysis, we introduce the traditional BLS approach for single-crystal elasticity, and this is followed by a discussion of more recent developments in powder BLS. We conclude our review with a perspective on future developments in BLS that may enable BLS as a novel addition to the current catalog of process analytical technologies.


Assuntos
Luz , Espalhamento de Radiação , Análise Espectral/métodos
5.
AAPS PharmSciTech ; 19(8): 3430-3439, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30280355

RESUMO

Describing the elastic deformation of single-crystal molecular solids under stress requires a comprehensive determination of the fourth-rank stiffness tensor (Cijkl). Single crystals are, however, rarely utilized in industrial applications, and thus averaging techniques (e.g., the Voigt or Reuss approach) are employed to reduce the Cijkl (or its inverse Sijkl) to polycrystalline aggregate mechanical moduli. With increasing elastic anisotropy, the Voigt and Reuss-averaged aggregate moduli can diverge dramatically and, provided that drug molecules almost exclusively crystallize into low-symmetry space groups, warrants a significant need for accurate aggregate mechanical moduli. This elasticity data, which currently is largely absent for pharmaceutical materials, is expected to aid understanding how materials respond to direct compression and tablet formation. Powder Brillouin light scattering (p-BLS) has recently demonstrated facile access to porosity-independent, aggregate mechanical moduli. In this study, we extend our previous p-BLS model for obtaining mechanical properties and validate our approach against a broad library of molecular solids with diverse intermolecular interaction topologies and with previously determined Cijkl which permits benchmarking our results. Our Young's and shear moduli determined with p-BLS strongly correlate, with limited bias (i.e., a near 1:1 relation), with the Voigt-averaged Young's and shear moduli determined using the Cijkl. Through follow-on tabletability studies, we introduce initial classifications of tabletability behavior based on the results of our p-BLS studies and the apparent elastic anisotropy. With further development, this approach represents a robust and novel method to potentially identify materials for optimum tabletability at early developmental stages.


Assuntos
Difusão Dinâmica da Luz/métodos , Elasticidade , Pós/química , Comprimidos/química , Cristalização , Porosidade , Pressão , Reprodutibilidade dos Testes , Estresse Mecânico
6.
Soft Matter ; 13(34): 5684-5695, 2017 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-28744535

RESUMO

Microgel mechanics are central to the swelling of stimuli-responsive materials and furthermore have recently emerged as a novel design space for tuning the uptake of nanotherapeutics. Despite this importance, the techniques available to assess mechanics, at the sub-micron scale, remain limited. In this report, all mechanical moduli for a series of air-dried, polystyrene-co-poly(N-isopropylacrylamide) (pS-co-NIPAM) microgels of varying composition in monomer and crosslinker (N,N'-methylene-bisacrylamide (BIS)) mol% have been determined using Brillouin light scattering (BLS) and AFM nanoindentation. These techniques sample the material through distinct means and provide complementary nanomechanical data. An initial demonstration of this combined approach is used to evaluate size-dependent nanomechanics in pS particles of varying diameter. For the pS-co-NIPAM series, our BLS results demonstrate an increase in Young's (E) and shear moduli with increasing NIPAM and/or BIS mol%, while the Poisson's ratio decreased. The same rank order in E was observed from AFM and the two techniques correlate well. However, at low BIS crosslinking, an inverted particle structure persists and small increases in BIS yield a higher increase in E from AFM relative to BLS, consistent with a higher density at the particle surface. At higher BIS incorporation, the microgel reverts to a typical, dense-core structure and further increasing BIS yields changes to core-particle mechanics reflected in BLS. Lastly, at 75 mol% NIPAM, the microgels displayed a broad volume phase transition and increased crosslinking resulted in a minor, yet unexpected, increase in swelling ratio. This complementary approach offers new insight into nanomechanics critical for microgel design and application.

7.
Mol Pharm ; 13(11): 3794-3806, 2016 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-27723351

RESUMO

The tableting performance for p-aminobenzoic acid (PABA) and a series of its benzoate esters with increasing alkyl chain length (methyl-, ethyl-, and n-butyl) was determined over a broad range of compaction pressures. The crystalline structure of methyl benzoate (Me-PABA) exhibits no slip systems and does not form viable compacts under any compaction pressure. The ethyl (Et-PABA) and n-butyl (Bu-PABA) esters each have a similar, corrugated-layer structure that displays a prominent slip plane and improves material plasticity at low compaction pressure. The compact tensile strength for Et-PABA is superior to that for Bu-PABA; however, neither material achieved a tensile strength greater than 2 MPa over the compression range studied. Complementary studies with powder Brillouin light scattering (BLS) show the maxima of the shear wave, acoustic frequency distribution red shift in an order consistent with both the observed tabletability and attachment energy calculations. Moreover, zero-porosity aggregate elastic moduli are determined for each material using the average acoustic frequency obtained from specific characteristics of the powder BLS spectra. The Young's moduli for Et- and Bu-PABA is significantly reduced relative to PABA and Me-PABA, and this reduction is further evident in tablet compressibility plots. PABA, however, is distinct with high elastic isotropy as interpreted from the narrow and well-defined powder BLS frequency distributions for both the shear and compressional acoustic modes. The acoustic isotropy is consistent with the quasi-isotropic distribution of hydrogen bonding for PABA. At low compaction pressure, PABA tablets display the lowest tensile strength of the series; however, above a compaction pressure of ca. 70 MPa PABA tablet tensile strength continues to increase while that for Et- and Bu-PABA plateaus. PABA displays lower plasticity relative to either ester, and this is consistent with its crystalline structure and high yield pressure determined from in-die Heckel analysis. Overall the complementary approach of using both structural and the acoustic inputs uniquely provided from powder BLS is anticipated to expand our comprehension of the structure-mechanics relationship and its role in tableting performance.


Assuntos
Ácido 4-Aminobenzoico/química , Benzoatos/química , Ésteres/química , Estrutura Molecular , Difração de Raios X
8.
J Phys Chem A ; 118(31): 5969-82, 2014 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-25011055

RESUMO

The room temperature stability of 3,3'-diamino-4,4'-azoxyfurazan (DAAF) has been investigated using synchrotron far-infrared, mid-infrared, Raman spectroscopy, and synchrotron X-ray diffraction (XRD) up to 20 GPa. The as-loaded DAAF samples exhibited subtle pressure-induced ordering phenomena (associated with positional disorder of the azoxy "O" atom) resulting in doubling of the a-axis, to form a superlattice similar to the low-temperature polymorph. Neither high pressure synchrotron XRD, nor high pressure infrared or Raman spectroscopies indicated the presence of structural phase transitions up to 20 GPa. Compression was accommodated in the unit cell by a reduction of the c-axis between the planar DAAF layers, distortion of the ß-angle of the monoclinic lattice, and an increase in intermolecular hydrogen bonding. Changes in the ring and -NH2 deformation modes and increased intermolecular hydrogen bonding interactions with compression suggest molecular reorganizations and electronic transitions at ∼ 5 GPa and ∼ 10 GPa that are accompanied by a shifting of the absorption band edge into the visible. A fourth-order Birch-Murnaghan fit to the room temperature isotherm afforded an estimate of the zero-pressure isothermal bulk modulus, K0 = 12.4 ± 0.6 GPa and its pressure derivative K0' = 7.7 ± 0.3.


Assuntos
Oxidiazóis/química , Ligação de Hidrogênio , Estrutura Molecular , Pressão , Espectrofotometria Infravermelho , Análise Espectral Raman , Temperatura , Vibração , Difração de Raios X
9.
J Chem Theory Comput ; 20(7): 2921-2933, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38507252

RESUMO

Accurately predicting protein behavior across diverse pH environments remains a significant challenge in biomolecular simulations. Existing constant-pH molecular dynamics (CpHMD) algorithms are limited to fixed-charge force fields, hindering their application to biomolecular systems described by permanent atomic multipoles or induced dipoles. This work overcomes these limitations by introducing the first polarizable CpHMD algorithm in the context of the Atomic Multipole Optimized Energetics for Biomolecular Applications (AMOEBA) force field. Additionally, our implementation in the open-source Force Field X (FFX) software has the unique ability to handle titration state changes for crystalline systems including flexible support for all 230 space groups. The evaluation of constant-pH molecular dynamics (CpHMD) with the AMOEBA force field was performed on 11 crystalline peptide systems that span the titrating amino acids (Asp, Glu, His, Lys, and Cys). Titration states were correctly predicted for 15 out of the 16 amino acids present in the 11 systems, including for the coordination of Zn2+ by cysteines. The lone exception was for a HIS-ALA peptide where CpHMD predicted both neutral histidine tautomers to be equally populated, whereas the experimental model did not consider multiple conformers and diffraction data are unavailable for rerefinement. This work demonstrates the promise polarizable CpHMD simulations for pKa predictions, the study of biochemical mechanisms such as the catalytic triad of proteases, and for improved protein-ligand binding affinity accuracy in the context of pharmaceutical lead optimization.


Assuntos
Amoeba , Proteínas/química , Peptídeos , Simulação de Dinâmica Molecular , Concentração de Íons de Hidrogênio , Aminoácidos
10.
J Chem Phys ; 137(1): 014514, 2012 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-22779672

RESUMO

Acoustic properties of the fluorinated copolymer Kel F-800 were determined with Brillouin spectroscopy up to pressures of 85 GPa at 300 K. This research addresses outstanding issues in high-pressure polymer behavior, as to date the acoustic properties and equation of state of any polymer have not been determined above 20 GPa. We observed both longitudinal and transverse modes in all pressure domains, allowing us to calculate the C(11) and C(12) moduli, bulk, shear, and Young's moduli, and the density of Kel F-800 as a function of pressure. We found the behavior of the polymer with respect to all parameters to change drastically with pressure. As a result, we find that the data are best understood when split into two pressure regimes. At low pressures (less than ∼5 GPa), analysis of the room temperature isotherm with a semi-empirical equation of state yielded a zero-pressure bulk modulus K(o) and its derivative K(0) (') of 12.8 ± 0.8 GPa and 9.6 ± 0.7, respectively. The same analysis for the higher pressure data yielded values for K(o) and K(0) (') of 34.9 ± 1.7 GPa and 5.1 ± 0.1, respectively. We discuss this significant difference in behavior with reference to the concept of effective free volume collapse.

11.
J Pharm Sci ; 111(2): 440-449, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34516989

RESUMO

Drug product performance is polymorph specific, and it is imperative that solid phase stability be monitored throughout the manufacturing process to ensure final product quality and performance. PXRD remains the gold standard for polymorph identification, but due to a growing interest in continuous manufacturing, a need has emerged for alternative process analytical technologies (PATs) that can provide fast, reliable, and non-destructive polymorph discrimination amenable to in situ process monitoring. Herein we demonstrate an original application of powder Brillouin light scattering (p-BLS) for the discrimination of polymorphic molecular solids. We hypothesize that the anisotropic sound velocities directly reflect the strength and orientation of the intermolecular forces in molecular solids. Redistributing these forces upon polymorphic conversion should thus clearly be reflected in the sound frequency distributions obtained by p-BLS. To test this hypothesis, three model compounds - resorcinol, sulfamerazine and furosemide - were selected. Distinct, polymorph-specific, acoustic frequency distributions were observed, and these p-BLS spectra were interpreted using a hydrogen-bond analysis and energy frameworks calculated from CrystalExplorer. In conclusion, this study clearly demonstrates that the sound frequencies measured in p-BLS are sensitive to the interaction forces in molecular solids, and p-BLS is a novel optical technique capable of reliably discriminating polymorphs. Extending this study further, we fully expect that many pharmaceutically relevant processes - e.g., hydrate formation, co-crystallization, or amorphous instability - could potentially be monitored using p-BLS.


Assuntos
Luz , Fenômenos Mecânicos , Anisotropia , Cristalização/métodos , Pós/química
12.
Toxicol In Vitro ; 70: 105031, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33075489

RESUMO

The increasing appearance of engineered nanomaterials in broad biomedical and industrial sectors poses an escalating health concern from unintended exposure with unknown consequences. Routine in vitro assessments of nanomaterial toxicity are a vital component to addressing these mounting health concerns; however, despite the known role of cell-cell and cell-matrix contacts in governing cell survival, these physical interactions are generally ignored. Herein, we demonstrate that exposure to amorphous silica particles destabilizes mitochondrial membrane potential, stimulates reactive oxygen species (ROS) production and promotes cytotoxicity in SH-SY5Y human neuroblastoma through mechanisms that are potently matrix dependent, with SH-SY5Y cells plated on the softest matrix displaying a near complete recovery in viability compared to dose-matched cells plated on tissue-culture plastic. Cells on the softest matrix (3 kPa) further displayed a 50% reduction in ROS production and preserved mitochondrial membrane potential. The actin cytoskeleton is mechanosensitive and closely related to ROS production. SH-SY5Y cells exposed to a 100 µg/mL dose of 50 nm silica particles displayed distinct cytoskeletal aberrations and a 70% increase in cell stiffness. Overall, this study establishes that the mechanical environment can significantly impact silica nanoparticle toxicity in SH-SY5Y cells. The mechanobiochemical mechanisms behind this regulation, which are initiated at the cell-matrix interface to adjust cytoskeletal structure and intracellular tension, demand specific attention for a comprehensive understanding of nanotoxicity.


Assuntos
Nanopartículas/toxicidade , Dióxido de Silício/toxicidade , Neoplasias Encefálicas/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Neuroblastoma/metabolismo , Fenômenos Físicos , Espécies Reativas de Oxigênio/metabolismo
13.
Eur J Pharm Biopharm ; 153: 23-35, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32504797

RESUMO

Drug-drug cocrystals (DDC) represent a unique subset of pharmaceutical materials offering distinct advantages in combination therapies, pharmacokinetics, and patient compliance. However, their structure-function relationships are rarely reported despite its central importance in successful medicine. A material-sparing approach consisting of a molecular and structural perspective is reported to evaluate tabletability of a model DDC, metformin:salicylic acid, relative to its components: metformin HCl (MET) and sodium salicylate (SAL). MET alone displayed a very poor tabletability, which could be attributed to its isotropic and stiff interaction topology. SAL displayed a highly anisotropic interaction topology with layers of strongly hydrogen-bonded salicylate molecules promoting deformation and tabletability. This is also confirmed by its low moduli. DDC yielded intermediate stiffness and elastic anisotropy material with an improved plastic flow and overall better tabletability. Overall, DDC is a promising therapeutic class requiring the physical-mechanical evaluation to assure their processability to enjoy their therapeutic advantages.


Assuntos
Metformina/química , Ácido Salicílico/química , Comprimidos/química , Anisotropia , Cristalização/métodos , Relação Estrutura-Atividade
14.
ACS Chem Neurosci ; 11(6): 840-850, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-32058688

RESUMO

Aggregated amyloid beta (Aß) is widely reported to cause neuronal dystrophy and toxicity through multiple pathways: oxidative stress, disrupting calcium homeostasis, and cytoskeletal dysregulation. The neuro-cytoskeleton is a dynamic structure that reorganizes to maintain cell homeostasis in response to varying soluble and physical cues presented from the extracellular matrix (ECM). Due this relationship between cell health and the ECM, we hypothesize that amyloid toxicity may be directly influenced by physical changes to the ECM (stiffness and dimensionality) through mechanosensitive pathways, and while previous studies demonstrated that Aß can distort focal adhesion signaling with pathological consequences, these studies do not address the physical contribution from a physiologically relevant matrix. To test our hypothesis that physical cues can adjust Aß toxicity, SH-SY5Y human neuroblastoma and primary human cortical neurons were plated on soft and stiff, 2D polyacrylamide matrices or suspended in 3D collagen gels. Each cell culture was exposed to escalating concentrations of oligomeric or fibrillated Aß(1-42) with MTS viability and lactate dehydrogenase toxicity assessed. Actin restructuring was further monitored in live cells by atomic force microscopy nanoindentation, and our results demonstrate that increasing either matrix stiffness or exposure to oligomeric Aß promotes F-actin polymerization and cell stiffening, while mature Aß fibrils yielded no apparent cell stiffening and minor toxicity. Moreover, the rounded, softer mechanical phenotype displayed by cells plated onto a compliant matrix also demonstrated a resilience to oligomeric Aß as noted by a significant recovery of viability when compared to same-dosed cells plated on traditional tissue culture plastic. This recovery was reproduced pharmacologically through inhibiting actin polymerization with cytochalasin D prior to Aß exposure. These studies indicate that the cell-ECM interface can modify amyloid toxicity in neurons and the matrix-mediated pathways that promote this protection may offer unique targets in amyloid pathologies like Alzheimer's disease.


Assuntos
Peptídeos beta-Amiloides , Linhagem Celular Tumoral , Neuroblastoma , Fragmentos de Peptídeos , Humanos , Neurônios , Fenótipo
15.
J Chem Phys ; 131(22): 224703, 2009 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-20001072

RESUMO

Quantum chemistry-based dipole polarizable and nonpolarizable force fields have been developed for 1,3,5-triamino-2,4,6-trinitrobenzene (TATB). Molecular dynamics simulations of TATB crystals were performed for hydrostatic pressures up to 10 GPa at 300 K and for temperatures between 200 and 400 K at atmospheric pressure. The predicted heat of sublimation and room-temperature volumetric hydrostatic compression curve were found to be in good agreement with available experimental data. The hydrostatic compression curves for individual unit cell parameters were found to be in reasonable agreement with those data. The pressure- and temperature-dependent second-order isothermal elastic tensor was determined for temperatures between 200 and 400 K at normal pressure and for pressures up to 10 GPa on the 300 K isotherm. Simulations indicate considerable anisotropy in the mechanical response, with modest softening and significant stiffening of the crystal with increased temperature and pressure, respectively. For most properties the polarizable potential was found to yield better agreement with available experimental properties.

16.
ACS Chem Neurosci ; 10(3): 1284-1293, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30499651

RESUMO

Alzheimer's disease (AD), the most common neurodegenerative disorder, is characterized by the extracellular deposition of dense amyloid beta plaques. Emerging evidence suggests that the production of these plaques is initiated by the intracellular uptake and lysosomal preconcentration of the amyloid-beta (Aß) peptide. All previous endocytosis studies assess Aß uptake with cells plated on traditional tissue culture plastic; however, brain tissue is distinctly soft with a low-kPa stiffness. Use of an ultrastiff plastic/glass substrate prompts a mechanosensitive response (increased cell spreading, cell stiffness, and membrane tension) that potentially distorts a cell's endocytic behavior from that observed in vivo or in a more physiologically relevant mechanical environment. Our studies demonstrate substrate stiffness significantly modifies the behavior of undifferentiated SH-SY5Y neuroblastoma, where cells plated on soft (∼1 kPa) substrates display a rounded morphology, decreased actin polymerization, reduced adhesion (decreased ß1 integrin expression), and reduced cell stiffness compared to cells plated on tissue culture plastic. Moreover, these neuroblastoma on softer substrates display a preferential increase in the uptake of the Aß(1-42) compared to Aß(1-40), while both isoforms display a clear stiffness-dependent increase of uptake relative to cells plated on plastic. Considering the brain is a soft tissue that continues to soften with age, this mechanosensitive endocytosis of Aß has significant implications for understanding age-related neurodegeneration and the mechanism behind Aß uptake and fibril production. Overall, identifying these physical factors that contribute to the pathology of AD may offer novel avenues of therapeutic intervention.


Assuntos
Actinas/metabolismo , Peptídeos beta-Amiloides/metabolismo , Endocitose/fisiologia , Matriz Extracelular/metabolismo , Fragmentos de Peptídeos/metabolismo , Resinas Acrílicas , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Colesterol/metabolismo , Elasticidade , Géis , Vidro , Humanos
17.
ACS Appl Bio Mater ; 1(5): 1254-1265, 2018 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34996229

RESUMO

The mechanical properties of submicron particles offer a unique design space for advanced drug-delivery particle engineering. However, the recognition of this potential is limited by a poor consensus about both the specificity and sensitivity of mechanosensitive endocytosis over a broad particle stiffness range. In this report, our model series of polystyrene-co-poly(N-isopropylacrylamide) (pS-co-NIPAM) microgels have been prepared with a nominally constant monomer composition (50 mol % styrene and 50 mol % NIPAM) with varied bis-acrylamide cross-linking densities to introduce a tuned spectrum of particle mechanics without significant variation in particle size and surface charge. While previous mechanosensitive studies use particles with moduli ranging from 15 kPa to 20 MPa, the pS-co-NIPAM particles have Young's moduli (E) ranging from 300 to 700 MPa, which is drastically stiffer than these previous studies as well as pure pNIPAM. Despite this elevated stiffness, particle uptake in RAW264.7 murine macrophages displays a clear stiffness dependence, with a significant increase in particle uptake for our softest microgels after a 4 h incubation. Preferential uptake of the softest microgel, pS-co-NIPAM-1 (E = 310 kPa), was similarly observed with nonphagocytic HepG2 hepatoma cells; however, the uptake kinetics were distinct relative to that observed for RAW264.7 cells. Pharmacological inhibitors, used to probe for specific routes of particle internalization, identify actin- and microtubule-dependent pathways in RAW264.7 cells as sensitive particle mechanics. For our pS-co-NIPAM particles at nominally 300-400 nm in size, this microtubule-dependent pathway was interpreted as a phagocytic route. For our high-stiffness microgel series, this study provides evidence of cell-specific, mechanosensitive endocytosis in a distinctly new stiffness regime that will further broaden the functional landscape of mechanics as a design space for particle engineering.

18.
J Phys Condens Matter ; 23(12): 125402, 2011 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-21386372

RESUMO

Static high pressure diamond anvil cell experiments were performed on three polycrystalline Zr samples having varying interstitial impurity concentrations. Systematic increase in transition pressure with the increase in the amount of interstitial impurities is observed for the martensitic α →ω structural phase transition in Zr. Significant room temperature crystal grain growth is also observed for the two highest purity samples at the α →ω transition. In the case of the lowest purity sample interstitial impurities obstruct the α →ω transition, while possibly helping impede grain growth-even as the sample is heated to 1279 K.

19.
J Chem Phys ; 127(10): 104906, 2007 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-17867779

RESUMO

The acoustic properties of three polymer elastomers, a cross-linked poly(dimethylsiloxane) (Sylgard 184), a cross-linked terpolymer poly(ethylene-vinyl acetate-vinyl alcohol), and a segmented thermoplastic poly(ester urethane) copolymer (Estane 5703), have been measured from ambient pressure to approximately 12 GPa by using Brillouin scattering in high-pressure diamond anvil cells. The Brillouin-scattering technique is a powerful tool for aiding in the determination of equations of state for a variety of materials, but to date has not been applied to polymers at pressures exceeding a few kilobars. For the three elastomers, both transverse and longitudinal acoustic modes were observed, though the transverse modes were observed only at elevated pressures (>0.7 GPa) in all cases. From the Brillouin frequency shifts, longitudinal and transverse sound speeds were calculated, as were the C(11) and C(12) elastic constants, bulk, shear, and Young's moduli, and Poisson's ratios, and their respective pressure dependencies. P-V isotherms were then constructed, and fit to several empirical/semiempirical equations of state to extract the isothermal bulk modulus and its pressure derivative for each material. Finally, the lack of shear waves observed for any polymer at ambient pressure, and the pressure dependency of their appearance is discussed with regard to instrumental and material considerations.

20.
J Chem Phys ; 124(2): 024712, 2006 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-16422631

RESUMO

The acoustic phonons of cyclotrimethylene trinitramine (RDX) have been studied using Brillouin scattering. The analysis of the acoustic-phonon velocities allowed determination of the complete stiffness tensor for this energetic material. The results are compared to other recent experimental and theoretical determinations of the RDX elastic constants, bulk moduli, and shear moduli. The observed ordering of elastic constants, C11>C22>C33, is qualitatively associated with a (001) cleavage plane and molecular packing. This interpretation is further corroborated by the linear compressibilities plotted in three crystallographic planes, and a comparison to recent theoretical and experimental hydrostatic compression studies on RDX. Finally, the elasticity of RDX is compared to a recently published report on the beta polymorph of cyclotetramethylene tetranitramine's elasticity, and is related to several proposed mechanisms for detonation initiation.


Assuntos
Físico-Química/métodos , Triazinas/química , Acústica , Anisotropia , Cristalografia , Elasticidade , Íons , Modelos Químicos , Modelos Estatísticos , Modelos Teóricos , Pressão , Espalhamento de Radiação , Estresse Mecânico , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA