Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Hepatology ; 72(6): 1968-1986, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32145091

RESUMO

BACKGROUND AND AIMS: Vacuolar H+-ATP complex (V-ATPase) is a multisubunit protein complex required for acidification of intracellular compartments. At least five different factors are known to be essential for its assembly in the endoplasmic reticulum (ER). Genetic defects in four of these V-ATPase assembly factors show overlapping clinical features, including steatotic liver disease and mild hypercholesterolemia. An exception is the assembly factor vacuolar ATPase assembly integral membrane protein (VMA21), whose X-linked mutations lead to autophagic myopathy. APPROACH AND RESULTS: Here, we report pathogenic variants in VMA21 in male patients with abnormal protein glycosylation that result in mild cholestasis, chronic elevation of aminotransferases, elevation of (low-density lipoprotein) cholesterol and steatosis in hepatocytes. We also show that the VMA21 variants lead to V-ATPase misassembly and dysfunction. As a consequence, lysosomal acidification and degradation of phagocytosed materials are impaired, causing lipid droplet (LD) accumulation in autolysosomes. Moreover, VMA21 deficiency triggers ER stress and sequestration of unesterified cholesterol in lysosomes, thereby activating the sterol response element-binding protein-mediated cholesterol synthesis pathways. CONCLUSIONS: Together, our data suggest that impaired lipophagy, ER stress, and increased cholesterol synthesis lead to LD accumulation and hepatic steatosis. V-ATPase assembly defects are thus a form of hereditary liver disease with implications for the pathogenesis of nonalcoholic fatty liver disease.


Assuntos
Autofagia/genética , Defeitos Congênitos da Glicosilação/genética , Hepatopatias/genética , ATPases Vacuolares Próton-Translocadoras/genética , Adulto , Biópsia , Células Cultivadas , Defeitos Congênitos da Glicosilação/sangue , Defeitos Congênitos da Glicosilação/diagnóstico , Defeitos Congênitos da Glicosilação/patologia , Análise Mutacional de DNA , Fibroblastos , Humanos , Fígado/citologia , Fígado/patologia , Hepatopatias/sangue , Hepatopatias/diagnóstico , Hepatopatias/patologia , Masculino , Mutação de Sentido Incorreto , Linhagem , Cultura Primária de Células
2.
Nature ; 481(7381): 360-4, 2012 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-22230956

RESUMO

Many cellular processes are carried out by molecular 'machines'-assemblies of multiple differentiated proteins that physically interact to execute biological functions. Despite much speculation, strong evidence of the mechanisms by which these assemblies evolved is lacking. Here we use ancestral gene resurrection and manipulative genetic experiments to determine how the complexity of an essential molecular machine--the hexameric transmembrane ring of the eukaryotic V-ATPase proton pump--increased hundreds of millions of years ago. We show that the ring of Fungi, which is composed of three paralogous proteins, evolved from a more ancient two-paralogue complex because of a gene duplication that was followed by loss in each daughter copy of specific interfaces by which it interacts with other ring proteins. These losses were complementary, so both copies became obligate components with restricted spatial roles in the complex. Reintroducing a single historical mutation from each paralogue lineage into the resurrected ancestral proteins is sufficient to recapitulate their asymmetric degeneration and trigger the requirement for the more elaborate three-component ring. Our experiments show that increased complexity in an essential molecular machine evolved because of simple, high-probability evolutionary processes, without the apparent evolution of novel functions. They point to a plausible mechanism for the evolution of complexity in other multi-paralogue protein complexes.


Assuntos
Evolução Molecular , Fungos/enzimologia , Modelos Biológicos , ATPases Vacuolares Próton-Translocadoras/química , ATPases Vacuolares Próton-Translocadoras/metabolismo , Algoritmos , Biologia Computacional , Extinção Biológica , Fungos/classificação , Fungos/genética , Duplicação Gênica , Mutagênese , Filogenia , Conformação Proteica , Saccharomyces cerevisiae/enzimologia , ATPases Vacuolares Próton-Translocadoras/genética
5.
J Biol Chem ; 287(23): 19487-500, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22496448

RESUMO

Subunit a of the yeast vacuolar-type, proton-translocating ATPase enzyme complex (V-ATPase) is responsible for both proton translocation and subcellular localization of this highly conserved molecular machine. Inclusion of the Vph1p isoform causes the V-ATPase complex to traffic to the vacuolar membrane, whereas incorporation of Stv1p causes continued cycling between the trans-Golgi and endosome. We previously demonstrated that this targeting information is contained within the cytosolic, N-terminal portion of V-ATPase subunit a (Stv1p). To identify residues responsible for sorting of the Golgi isoform of the V-ATPase, a random mutagenesis was performed on the N terminus of Stv1p. Subsequent characterization of mutant alleles led to the identification of a short peptide sequence, W(83)KY, that is necessary for proper Stv1p localization. Based on three-dimensional homology modeling to the Meiothermus ruber subunit I, we propose a structural model of the intact Stv1p-containing V-ATPase demonstrating the accessibility of the W(83)KY sequence to retrograde sorting machinery. Finally, we characterized the sorting signal within the context of a reconstructed Stv1p ancestor (Anc.Stv1). This evolutionary intermediate includes an endogenous W(83)KY sorting motif and is sufficient to compete with sorting of the native yeast Stv1p V-ATPase isoform. These data define a novel sorting signal that is both necessary and sufficient for trafficking of the V-ATPase within the Golgi/endosomal network.


Assuntos
Endossomos/enzimologia , Sinais Direcionadores de Proteínas/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , ATPases Vacuolares Próton-Translocadoras/metabolismo , Rede trans-Golgi/enzimologia , Motivos de Aminoácidos , Endossomos/genética , Evolução Molecular , Isoenzimas/genética , Isoenzimas/metabolismo , Modelos Moleculares , Transporte Proteico/fisiologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Homologia Estrutural de Proteína , ATPases Vacuolares Próton-Translocadoras/genética , Rede trans-Golgi/genética
9.
Traffic ; 9(10): 1618-28, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18694437

RESUMO

How individual protein subunits assemble into the higher order structure of a protein complex is not well understood. Four proteins dedicated to the assembly of the V(0) subcomplex of the V-adenosine triphosphatase (V-ATPase) in the endoplasmic reticulum (ER) have been identified in yeast, but their precise mode of molecular action remains to be identified. In contrast to the highly conserved subunits of the V-ATPase, orthologs of the yeast assembly factors are not easily identified based on sequence similarity. We show in this study that two ER-localized Arabidopsis proteins that share only 25% sequence identity with Vma21p can functionally replace this yeast assembly factor. Loss of AtVMA21a function in RNA interference seedlings caused impaired cell expansion and changes in Golgi morphology characteristic for plants with reduced V-ATPase activity, and we therefore conclude that AtVMA21a is the first V-ATPase assembly factor identified in a multicellular eukaryote. Moreover, VMA21p acts as a dedicated ER escort chaperone, a class of substrate-specific accessory proteins so far not identified in higher plants.


Assuntos
Proteínas de Arabidopsis/biossíntese , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Chaperoninas/biossíntese , Chaperoninas/genética , Chaperoninas/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , ATPases Vacuolares Próton-Translocadoras/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/ultraestrutura , Eletroforese em Gel de Poliacrilamida , Retículo Endoplasmático/enzimologia , Retículo Endoplasmático/ultraestrutura , Complexo de Golgi/enzimologia , Complexo de Golgi/ultraestrutura , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Membrana/biossíntese , Proteínas de Membrana/genética , Microscopia Imunoeletrônica , Dados de Sequência Molecular , Plasmídeos , Subunidades Proteicas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/biossíntese , Proteínas de Saccharomyces cerevisiae/genética , Homologia de Sequência de Aminoácidos , ATPases Vacuolares Próton-Translocadoras/biossíntese , ATPases Vacuolares Próton-Translocadoras/genética
10.
Mol Biol Cell ; 29(18): 2156-2164, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29995586

RESUMO

ATP6AP2 (also known as the [pro]renin receptor) is a type I transmembrane protein that can be cleaved into two fragments in the Golgi apparatus. While in Drosophila ATP6AP2 functions in the planar cell polarity (PCP) pathway, recent human genetic studies have suggested that ATP6AP2 could participate in the assembly of the V-ATPase in the endoplasmic reticulum (ER). Using a yeast model, we show here that the V-ATPase assembly factor Voa1 can functionally be replaced by Drosophila ATP6AP2. This rescue is even more efficient when coexpressing its binding partner ATP6AP1, indicating that these two proteins together fulfill Voa1 functions in higher organisms. Structure-function analyses in both yeast and Drosophila show that proteolytic cleavage is dispensable, while C-terminus-dependent ER retrieval is required for ATP6AP2 function. Accordingly, we demonstrate that both overexpression and lack of ATP6AP2 causes ER stress in Drosophila wing cells and that the induction of ER stress is sufficient to cause PCP phenotypes. In summary, our results suggest that full-length ATP6AP2 contributes to the assembly of the V-ATPase proton pore and that impairment of this function affects ER homeostasis and PCP signaling.


Assuntos
Proteínas de Drosophila/metabolismo , Proteínas de Membrana/metabolismo , Receptores de Superfície Celular/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Animais , Polaridade Celular/fisiologia , Proteínas de Drosophila/genética , Drosophila melanogaster/enzimologia , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Complexo de Golgi/metabolismo , Humanos , Proteínas de Membrana/genética , Receptores de Superfície Celular/genética , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , ATPases Vacuolares Próton-Translocadoras/genética
11.
Mol Biol Cell ; 14(4): 1610-23, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12686613

RESUMO

Multisubunit tethering complexes may contribute to the specificity of membrane fusion events by linking transport vesicles to their target membrane in an initial recognition event that promotes SNARE assembly. However, the interactions that link tethering factors to the other components of the vesicle fusion machinery are still largely unknown. We have previously identified three subunits of a Golgi-localized complex (the Vps52/53/54 complex) that is required for retrograde transport to the late Golgi. This complex interacts with a Rab and a SNARE protein found at the late Golgi and is related to two other multisubunit tethering complexes: the COG complex and the exocyst. Here we show that the Vps52/53/54 complex has an additional subunit, Vps51p. All four members of this tetrameric GARP (Golgi-associated retrograde protein) complex are required for two distinct retrograde transport pathways, from both early and late endosomes, back to the TGN. vps51 mutants exhibit a distinct phenotype suggestive of a regulatory role. Indeed, we find that Vps51p mediates the interaction between Vps52/53/54 and the t-SNARE Tlg1p. The binding of this small, coiled-coil protein to the conserved N-terminal domain of the t-SNARE therefore provides a crucial link between components of the tethering and the fusion machinery.


Assuntos
Proteínas de Transporte , Complexo de Golgi/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular , Transporte Biológico Ativo , Clonagem Molecular , Endossomos/metabolismo , Substâncias Macromoleculares , Fusão de Membrana/fisiologia , Proteínas de Membrana/química , Proteínas de Membrana/genética , Modelos Biológicos , Mutação , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas SNARE , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Técnicas do Sistema de Duplo-Híbrido
12.
Mol Biol Cell ; 14(5): 1868-81, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12802061

RESUMO

Intracellular membrane fusion requires that membrane-bound soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins on both vesicle and target membranes form a highly specific complex necessary to bring the membranes close in space. Ykt6p is a yeast R-SNARE protein that has been implicated in retrograde transport to the cis-Golgi compartment. Ykt6p has been also been found to fractionate with vacuole membranes and participate in a vacuolar SNARE complex in homotypic vacuole fusion. To investigate the role of Ykt6p in membrane traffic to the vacuole we generated temperature-sensitive mutations in YKT6. One mutation produces an early Golgi block to secretion, and overexpression of the SNARE protein Sft1p suppresses the growth and secretion defects of this mutation. These results are consistent with Ykt6p and Sft1p participating in a SNARE complex associated with retrograde transport to the cis-Golgi. A second set of mutations in YKT6 specifically affects post-Golgi membrane traffic to the vacuole, and the effects of these mutations are not suppressed by Sft1p overexpression. Defects are seen in carboxypeptidase Y sorting, alkaline phosphatase transport, and aminopeptidase I delivery, and in one mutant, overexpression of the SNARE protein Nyv1p suppresses the alkaline phosphatase transport defect. By mutationally separating early and late requirements for Ykt6p, our findings have revealed that Ykt6p is a R-SNARE protein that functions directly in the three biosynthetic pathways to the vacuole.


Assuntos
Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/fisiologia , Vacúolos/metabolismo , Proteínas de Transporte Vesicular , Fosfatase Alcalina/metabolismo , Transporte Biológico Ativo/fisiologia , Catepsina A/metabolismo , Proteínas de Membrana/genética , Mutação , Proteínas Qc-SNARE , Proteínas R-SNARE , Proteínas SNARE , Temperatura
13.
Mol Biol Cell ; 15(11): 5075-91, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15356264

RESUMO

The Saccharomyces cerevisiae vacuolar H+-ATPase (V-ATPase) is a multisubunit complex composed of a peripheral membrane sector (V1) responsible for ATP hydrolysis and an integral membrane sector (V0) required for proton translocation. Biogenesis of V0 requires an endoplasmic reticulum (ER)-localized accessory factor, Vma21p. We found that in vma21Delta cells, the major proteolipid subunit of V0 failed to interact with the 100-kDa V0 subunit, Vph1p, indicating that Vma21p is necessary for V0 assembly. Immunoprecipitation of Vma21p from wild-type membranes resulted in coimmunoprecipitation of all five V0 subunits. Analysis of vmaDelta strains showed that binding of V0 subunits to Vma21p was mediated by the proteolipid subunit Vma11p. Although Vma21p/proteolipid interactions were independent of Vph1p, Vma21p/Vph1p association was dependent on all other V0 subunits, indicating that assembly of V0 occurs in a defined sequence, with Vph1p recruitment into a Vma21p/proteolipid/Vma6p complex representing the final step. An in vitro assay for ER export was used to demonstrate preferential packaging of the fully assembled Vma21p/proteolipid/Vma6p/Vph1p complex into COPII-coated transport vesicles. Pulse-chase experiments showed that the interaction between Vma21p and V0 was transient and that Vma21p/V0 dissociation was concomitant with V0/V1 assembly. Blocking ER export in vivo stabilized the interaction between Vma21p and V0 and abrogated assembly of V0/V1. Although a Vma21p mutant lacking an ER-retrieval signal remained associated with V0 in the vacuole, this interaction did not affect the assembly of vacuolar V0/V1 complexes. We conclude that Vma21p is not involved in regulating the interaction between V0 and V1 sectors, but that it has a crucial role in coordinating the assembly of V0 subunits and in escorting the assembled V0 complex into ER-derived transport vesicles.


Assuntos
Proteínas de Membrana/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/fisiologia , ATPases Vacuolares Próton-Translocadoras/química , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/química , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Genótipo , Glicerol/química , Imunoprecipitação , Proteínas de Membrana/metabolismo , Modelos Biológicos , Plasmídeos/metabolismo , Estrutura Terciária de Proteína , Prótons , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Temperatura , Fatores de Tempo , ATPases Vacuolares Próton-Translocadoras/fisiologia
14.
Biochim Biophys Acta ; 1744(3): 438-54, 2005 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-15913810

RESUMO

The late Golgi compartment is a major protein sorting station in the cell. Secreted proteins, cell surface proteins, and proteins destined for endosomes or lysosomes must be sorted from one another at this compartment and targeted to their correct destinations. The molecular details of protein trafficking pathways from the late Golgi to the endosomal system are becoming increasingly well understood due in part to information obtained by genetic analysis of yeast. It is now clear that proteins identified in yeast have functional homologues (orthologues) in higher organisms. We will review the molecular mechanisms of protein targeting from the late Golgi to endosomes and to the vacuole (the equivalent of the mammalian lysosome) of the budding yeast Saccharomyces cerevisiae.


Assuntos
Complexo de Golgi/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Vacúolos/metabolismo , Endossomos/metabolismo , Fusão de Membrana , Proteínas de Membrana/genética , Mutação , Transporte Proteico/genética , Proteínas de Saccharomyces cerevisiae/genética
15.
Nat Commun ; 7: 11600, 2016 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-27231034

RESUMO

The V-ATPase is the main regulator of intra-organellar acidification. Assembly of this complex has extensively been studied in yeast, while limited knowledge exists for man. We identified 11 male patients with hemizygous missense mutations in ATP6AP1, encoding accessory protein Ac45 of the V-ATPase. Homology detection at the level of sequence profiles indicated Ac45 as the long-sought human homologue of yeast V-ATPase assembly factor Voa1. Processed wild-type Ac45, but not its disease mutants, restored V-ATPase-dependent growth in Voa1 mutant yeast. Patients display an immunodeficiency phenotype associated with hypogammaglobulinemia, hepatopathy and a spectrum of neurocognitive abnormalities. Ac45 in human brain is present as the common, processed ∼40-kDa form, while liver shows a 62-kDa intact protein, and B-cells a 50-kDa isoform. Our work unmasks Ac45 as the functional ortholog of yeast V-ATPase assembly factor Voa1 and reveals a novel link of tissue-specific V-ATPase assembly with immunoglobulin production and cognitive function.


Assuntos
Disfunção Cognitiva/genética , Síndromes de Imunodeficiência/genética , Hepatopatias/genética , Mutação de Sentido Incorreto , ATPases Vacuolares Próton-Translocadoras/genética , Adolescente , Adulto , Sequência de Aminoácidos , Sequência de Bases , Criança , Pré-Escolar , Disfunção Cognitiva/metabolismo , Saúde da Família , Glicosilação , Humanos , Síndromes de Imunodeficiência/metabolismo , Lactente , Hepatopatias/metabolismo , Masculino , Homologia de Sequência de Aminoácidos , ATPases Vacuolares Próton-Translocadoras/deficiência , Adulto Jovem
16.
Dev Cell ; 27(4): 462-8, 2013 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-24286827

RESUMO

Studies of homotypic vacuole-vacuole fusion in the yeast Saccharomyces cerevisiae have been instrumental in determining the cellular machinery required for eukaryotic membrane fusion and have implicated the vacuolar H(+)-ATPase (V-ATPase). The V-ATPase is a multisubunit, rotary proton pump whose precise role in homotypic fusion is controversial. Models formulated from in vitro studies suggest that it is the proteolipid proton-translocating pore of the V-ATPase that functions in fusion, with further studies in worms, flies, zebrafish, and mice appearing to support this model. We present two in vivo assays and use a mutant V-ATPase subunit to establish that it is the H(+)-translocation/vacuole acidification function, rather than the physical presence of the V-ATPase, that promotes homotypic vacuole fusion in yeast. Furthermore, we show that acidification of the yeast vacuole in the absence of the V-ATPase rescues vacuole-fusion defects. Our results clarify the in vivo requirements of acidification for membrane fusion.


Assuntos
Proteínas de Arabidopsis/metabolismo , Pirofosfatase Inorgânica/metabolismo , Fusão de Membrana/fisiologia , Saccharomyces cerevisiae/enzimologia , ATPases Vacuolares Próton-Translocadoras/metabolismo , Vacúolos/metabolismo , Animais , Arabidopsis/metabolismo , Fluorescência , Concentração de Íons de Hidrogênio , Camundongos , Mutação/genética , Bombas de Próton , Saccharomyces cerevisiae/genética , ATPases Vacuolares Próton-Translocadoras/genética
17.
Genetics ; 187(3): 771-83, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21196517

RESUMO

The function of the vacuolar H(+)-ATPase (V-ATPase) enzyme complex is to acidify organelles; this process is critical for a variety of cellular processes and has implications in human disease. There are five accessory proteins that assist in assembly of the membrane portion of the complex, the V(0) domain. To identify additional elements that affect V-ATPase assembly, trafficking, or enzyme activity, we performed a genome-wide enhancer screen in the budding yeast Saccharomyces cerevisiae with two mutant assembly factor alleles, VMA21 with a dysfunctional ER retrieval motif (vma21QQ) and vma21QQ in combination with voa1Δ, a nonessential assembly factor. These alleles serve as sensitized genetic backgrounds that have reduced V-ATPase enzyme activity. Genes were identified from a variety of cellular pathways including a large number of trafficking-related components; we characterized two redundant gene pairs, HPH1/HPH2 and ORM1/ORM2. Both sets demonstrated synthetic growth defects in combination with the vma21QQ allele. A loss of either the HPH or ORM gene pairs alone did not result in a decrease in vacuolar acidification or defects in V-ATPase assembly. While the Hph proteins are not required for V-ATPase function, Orm1p and Orm2p are required for full V-ATPase enzyme function. Consistent with the documented role of the Orm proteins in sphingolipid regulation, we have found that inhibition of sphingolipid synthesis alleviates Orm-related growth defects.


Assuntos
Elementos Facilitadores Genéticos , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/enzimologia , Esfingolipídeos/genética , ATPases Vacuolares Próton-Translocadoras/metabolismo , Genoma Fúngico , Peptídeos e Proteínas de Sinalização Intracelular/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Esfingolipídeos/metabolismo , ATPases Vacuolares Próton-Translocadoras/genética , Vacúolos/enzimologia , Vacúolos/genética , Vacúolos/metabolismo
18.
Mol Biol Cell ; 22(17): 3176-91, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21737673

RESUMO

The vacuolar-type, proton-translocating ATPase (V-ATPase) is a multisubunit enzyme responsible for organelle acidification in eukaryotic cells. Many organisms have evolved V-ATPase subunit isoforms that allow for increased specialization of this critical enzyme. Differential targeting of the V-ATPase to specific subcellular organelles occurs in eukaryotes from humans to budding yeast. In Saccharomyces cerevisiae, the two subunit a isoforms are the only difference between the two V-ATPase populations. Incorporation of Vph1p or Stv1p into the V-ATPase dictates the localization of the V-ATPase to the vacuole or late Golgi/endosome, respectively. A duplication event within fungi gave rise to two subunit a genes. We used ancestral gene reconstruction to generate the most recent common ancestor of Vph1p and Stv1p (Anc.a) and tested its function in yeast. Anc.a localized to both the Golgi/endosomal network and vacuolar membrane and acidified these compartments as part of a hybrid V-ATPase complex. Trafficking of Anc.a did not require retrograde transport from the late endosome to the Golgi that has evolved for retrieval of the Stv1p isoform. Rather, Anc.a localized to both structures through slowed anterograde transport en route to the vacuole. Our results suggest an evolutionary model that describes the differential localization of the two yeast V-ATPase isoforms.


Assuntos
Subunidades Proteicas/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , ATPases Vacuolares Próton-Translocadoras/metabolismo , Sequência de Aminoácidos , Sequência Consenso , Endossomos/metabolismo , Deleção de Genes , Técnicas de Inativação de Genes , Complexo de Golgi/metabolismo , Membranas Intracelulares/metabolismo , Dados de Sequência Molecular , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estrutura Terciária de Proteína , Subunidades Proteicas/genética , Transporte Proteico , Proteínas Recombinantes/genética , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Alinhamento de Sequência , ATPases Vacuolares Próton-Translocadoras/genética , Vacúolos/metabolismo
19.
Mol Biol Cell ; 21(23): 4057-60, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21115849

RESUMO

In 1992, Raymond et al. published a compilation of the 41 yeast vacuolar protein sorting (vps) mutant groups and described a large class of mutants (class E vps mutants) that accumulated an exaggerated prevacuolar endosome-like compartment. Further analysis revealed that this "class E compartment" contained soluble vacuolar hydrolases, vacuolar membrane proteins, and Golgi membrane proteins unable to recycle back to the Golgi complex, yet these class E vps mutants had what seemed to be normal vacuoles. The 13 class E VPS genes were later shown to encode the proteins that make up the complexes required for formation of intralumenal vesicles in late endosomal compartments called multivesicular bodies, and for the sorting of ubiquitinated cargo proteins into these internal vesicles for eventual delivery to the vacuole or lysosome.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Corpos Multivesiculares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Endossomos/metabolismo , Complexo de Golgi/metabolismo , História do Século XX , Corpos Multivesiculares/genética , Mutação , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/genética , Vacúolos/metabolismo , Vacúolos/ultraestrutura , Proteínas de Transporte Vesicular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA