RESUMO
BACKGROUND AND AIMS: Cycad is a key lineage to understand the early evolution of seed plants and their response to past environmental changes. However, tracing the evolutionary trajectory of cycad species is challenging when the robust relationships at inter- or infrageneric level are not well resolved. METHODS: Here, using 2,901 single-copy nuclear genes, we explored the species relationships and gene flow within the second largest genus of cycads, i.e., Zamia, based on phylotranscriptomic analyses of 90% extant Zamia species. Based on a well-resolved phylogenetic framework, we performed gene flow analyses, molecular dating, and biogeographical reconstruction to examine the spatiotemporal evolution of Zamia. We also performed ancestral state reconstruction (ASR) of a total of 62 traits of the genus to comprehensively investigate its morphological evolution. KEY RESULTS: Zamia is comprised of seven major clades corresponding to seven distinct distribution areas in the Americas, with at least three reticulation nodes revealed in this genus. Extant lineages of Zamia initially diversified around 18.4-32.6 (29.14) million years ago (MA) in the Mega-Mexico, and then expanded eastward into the Caribbean and southward into Central and South America. ASR revealed homoplasy in most of the morphological characters. CONCLUSIONS: This study revealed congruent phylogenetic relationships from comparative methods/datasets, with some conflicts being the result of incomplete lineage sorting and ancient/recent hybridization events. The strong association between the clades and the biogeographic areas suggested that ancient dispersal events shaped the modern distribution pattern, and regional climatic factors may have resulted in the following in-situ diversification. Climate cooling starting during the mid Miocene is associated with the global expansion of Zamia to the tropical South America that have dramatically driven lineage diversification in the New World flora, as well as the extinction of cycad species in the nowadays cooler regions of both hemispheres as indicated by the fossil records.
RESUMO
BACKGROUND AND AIMS: The size and shape of reproductive structures is especially relevant in evolution because these characters are directly related to the capacity of pollination and seed dispersal, a process that plays a basic role in evolutionary patterns. The evolutionary trajectories of reproductive phenotypes in gymnosperms have received special attention in terms of pollination and innovations related to the emergence of the Spermatophytes. However, variability of reproductive structures, evolutionary trends and the role of environment in the evolution of cycad species have not been well documented and explored. This study considered this topic under an explicitly phylogenetic and evolutionary approach that included a broad sampling of reproductive structures in the genus Ceratozamia. METHODS: We sampled 1400 individuals of 36 Ceratozamia species to explore evolutionary pattern and identify and evaluate factors that potentially drove their evolution. We analyzed characters for both pollen and ovulate strobili within a phylogenetic framework using different methods and characters (i. e., molecular and both quantitative and qualitative morphological) to infer phylogenetic relationships. Using this phylogenetic framework, evolutionary models of trait evolution for strobilar size were evaluated. In addition, quantitative morphological variation and its relation to environmental variables across species were analyzed. KEY RESULTS: We found contrasting phylogenetic signals between characters of pollen and ovulate strobili. These structures exhibited high morphological disparity in several characters related to size. Results of analyses of evolutionary trajectories suggested a stabilizing selection model. In regards to phenotype-environment, the analysis produced mixed results and differences for groups in the vegetation type where the species occur; however, a positive relationship with climatic variables was found. CONCLUSIONS: The integrated approach synthesized reproductive phenotypic variation with current phylogenetic hypotheses and provided explicit statements of character evolution. The characters of volume for ovulate strobili were the most informative, which could provide a reference for further study of the evolutionary complexity in Ceratozamia. Finally, heterogeneous environments, which are under changing weather conditions, promote variability of reproductive structures.
RESUMO
The Atacama Desert in Chile-hyperarid and with high-ultraviolet irradiance levels-is one of the harshest environments on Earth. Yet, dozens of species grow there, including Atacama-endemic plants. Herein, we establish the Talabre-Lejía transect (TLT) in the Atacama as an unparalleled natural laboratory to study plant adaptation to extreme environmental conditions. We characterized climate, soil, plant, and soil-microbe diversity at 22 sites (every 100 m of altitude) along the TLT over a 10-y period. We quantified drought, nutrient deficiencies, large diurnal temperature oscillations, and pH gradients that define three distinct vegetational belts along the altitudinal cline. We deep-sequenced transcriptomes of 32 dominant plant species spanning the major plant clades, and assessed soil microbes by metabarcoding sequencing. The top-expressed genes in the 32 Atacama species are enriched in stress responses, metabolism, and energy production. Moreover, their root-associated soils are enriched in growth-promoting bacteria, including nitrogen fixers. To identify genes associated with plant adaptation to harsh environments, we compared 32 Atacama species with the 32 closest sequenced species, comprising 70 taxa and 1,686,950 proteins. To perform phylogenomic reconstruction, we concatenated 15,972 ortholog groups into a supermatrix of 8,599,764 amino acids. Using two codon-based methods, we identified 265 candidate positively selected genes (PSGs) in the Atacama plants, 64% of which are located in Pfam domains, supporting their functional relevance. For 59/184 PSGs with an Arabidopsis ortholog, we uncovered functional evidence linking them to plant resilience. As some Atacama plants are closely related to staple crops, these candidate PSGs are a "genetic goldmine" to engineer crop resilience to face climate change.
Assuntos
Plantas/genética , Altitude , Chile , Mudança Climática , Clima Desértico , Ecossistema , Genômica/métodos , Filogenia , Solo , Microbiologia do SoloRESUMO
BACKGROUND AND AIMS: Cycads are regarded as an ancient lineage of living seed plants, and hold important clues to understand the early evolutionary trends of seed plants. The molecular phylogeny and spatio-temporal diversification of one of the species-rich genera of cycads, Macrozamia, have not been well reconstructed. METHODS: We analysed a transcriptome dataset of 4740 single-copy nuclear genes (SCGs) of 39 Macrozamia species and two outgroup taxa. Based on concatenated (maximum parsimony, maximum likelihood) and multispecies coalescent analyses, we first establish a well-resolved phylogenetic tree of Macrozamia. To identify cyto-nuclear incongruence, the plastid protein coding genes (PCGs) from transcriptome data are extracted using the software HybPiper. Furthermore, we explore the biogeographical history of the genus and shed light on the pattern of floristic exchange between three distinct areas of Australia. Six key diagnostic characters are traced on the phylogenetic framework using two comparative methods, and infra-generic classification is investigated. KEY RESULTS: The tree topologies of concatenated and multi-species coalescent analyses of SCGs are mostly congruent with a few conflicting nodes, while those from plastid PCGs show poorly supported relationships. The genus contains three major clades that correspond to their distinct distributional areas in Australia. The crown group of Macrozamia is estimated to around 11.80 Ma, with a major expansion in the last 5-6 Myr. Six morphological characters show homoplasy, and the traditional phenetic sectional division of the genus is inconsistent with this current phylogeny. CONCLUSIONS: This first detailed phylogenetic investigation of Macrozamia demonstrates promising prospects of SCGs in resolving phylogenetic relationships within cycads. Our study suggests that Macrozamia, once widely distributed in Australia, underwent major extinctions because of fluctuating climatic conditions such as cooling and mesic biome disappearance in the past. The current close placement of morphologically distinct species in the phylogenetic tree may be related to neotenic events that occurred in the genus.
Assuntos
Cycadopsida , Zamiaceae , Filogenia , Teorema de Bayes , Austrália , Evolução MolecularRESUMO
PREMISE: Phylogenetic trees of bryophytes provide important evolutionary context for land plants. However, published inferences of overall embryophyte relationships vary considerably. We performed phylogenomic analyses of bryophytes and relatives using both mitochondrial and plastid gene sets, and investigated bryophyte plastome evolution. METHODS: We employed diverse likelihood-based analyses to infer large-scale bryophyte phylogeny for mitochondrial and plastid data sets. We tested for changes in purifying selection in plastid genes of a mycoheterotrophic liverwort (Aneura mirabilis) and a putatively mycoheterotrophic moss (Buxbaumia), and compared 15 bryophyte plastomes for major structural rearrangements. RESULTS: Overall land-plant relationships conflict across analyses, generally weakly. However, an underlying (unrooted) four-taxon tree is consistent across most analyses and published studies. Despite gene coverage patchiness, relationships within mosses, liverworts, and hornworts are largely congruent with previous studies, with plastid results generally better supported. Exclusion of RNA edit sites restores cases of unexpected non-monophyly to monophyly for Takakia and two hornwort genera. Relaxed purifying selection affects multiple plastid genes in mycoheterotrophic Aneura but not Buxbaumia. Plastid genome structure is nearly invariant across bryophytes, but the tufA locus, presumed lost in embryophytes, is unexpectedly retained in several mosses. CONCLUSIONS: A common unrooted tree underlies embryophyte phylogeny, [(liverworts, mosses), (hornworts, vascular plants)]; rooting inconsistency across studies likely reflects substantial distance to algal outgroups. Analyses combining genomic and transcriptomic data may be misled locally for heavily RNA-edited taxa. The Buxbaumia plastome lacks hallmarks of relaxed selection found in mycoheterotrophic Aneura. Autotrophic bryophyte plastomes, including Buxbaumia, hardly vary in overall structure.
Assuntos
Briófitas , Evolução Molecular , Consenso , Funções Verossimilhança , FilogeniaRESUMO
The Planteome project (http://www.planteome.org) provides a suite of reference and species-specific ontologies for plants and annotations to genes and phenotypes. Ontologies serve as common standards for semantic integration of a large and growing corpus of plant genomics, phenomics and genetics data. The reference ontologies include the Plant Ontology, Plant Trait Ontology and the Plant Experimental Conditions Ontology developed by the Planteome project, along with the Gene Ontology, Chemical Entities of Biological Interest, Phenotype and Attribute Ontology, and others. The project also provides access to species-specific Crop Ontologies developed by various plant breeding and research communities from around the world. We provide integrated data on plant traits, phenotypes, and gene function and expression from 95 plant taxa, annotated with reference ontology terms. The Planteome project is developing a plant gene annotation platform; Planteome Noctua, to facilitate community engagement. All the Planteome ontologies are publicly available and are maintained at the Planteome GitHub site (https://github.com/Planteome) for sharing, tracking revisions and new requests. The annotated data are freely accessible from the ontology browser (http://browser.planteome.org/amigo) and our data repository.
Assuntos
Bases de Dados Genéticas , Genoma de Planta , Plantas/genética , Produtos Agrícolas/genética , Curadoria de Dados , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Anotação de Sequência Molecular , Fenótipo , Software , Interface Usuário-ComputadorRESUMO
The draft genome of the moss model, Physcomitrella patens, comprised approximately 2000 unordered scaffolds. In order to enable analyses of genome structure and evolution we generated a chromosome-scale genome assembly using genetic linkage as well as (end) sequencing of long DNA fragments. We find that 57% of the genome comprises transposable elements (TEs), some of which may be actively transposing during the life cycle. Unlike in flowering plant genomes, gene- and TE-rich regions show an overall even distribution along the chromosomes. However, the chromosomes are mono-centric with peaks of a class of Copia elements potentially coinciding with centromeres. Gene body methylation is evident in 5.7% of the protein-coding genes, typically coinciding with low GC and low expression. Some giant virus insertions are transcriptionally active and might protect gametes from viral infection via siRNA mediated silencing. Structure-based detection methods show that the genome evolved via two rounds of whole genome duplications (WGDs), apparently common in mosses but not in liverworts and hornworts. Several hundred genes are present in colinear regions conserved since the last common ancestor of plants. These syntenic regions are enriched for functions related to plant-specific cell growth and tissue organization. The P. patens genome lacks the TE-rich pericentromeric and gene-rich distal regions typical for most flowering plant genomes. More non-seed plant genomes are needed to unravel how plant genomes evolve, and to understand whether the P. patens genome structure is typical for mosses or bryophytes.
Assuntos
Evolução Biológica , Bryopsida/genética , Cromossomos de Plantas , Genoma de Planta , Centrômero , Cromatina/genética , Metilação de DNA , Elementos de DNA Transponíveis , Variação Genética , Polimorfismo de Nucleotídeo Único , Recombinação Genética , SinteniaRESUMO
Scientists building the Tree of Life face an overwhelming challenge to categorize phenotypes (e.g., anatomy, physiology) from millions of living and fossil species. This biodiversity challenge far outstrips the capacities of trained scientific experts. Here we explore whether crowdsourcing can be used to collect matrix data on a large scale with the participation of nonexpert students, or "citizen scientists." Crowdsourcing, or data collection by nonexperts, frequently via the internet, has enabled scientists to tackle some large-scale data collection challenges too massive for individuals or scientific teams alone. The quality of work by nonexpert crowds is, however, often questioned and little data have been collected on how such crowds perform on complex tasks such as phylogenetic character coding. We studied a crowd of over 600 nonexperts and found that they could use images to identify anatomical similarity (hypotheses of homology) with an average accuracy of 82% compared with scores provided by experts in the field. This performance pattern held across the Tree of Life, from protists to vertebrates. We introduce a procedure that predicts the difficulty of each character and that can be used to assign harder characters to experts and easier characters to a nonexpert crowd for scoring. We test this procedure in a controlled experiment comparing crowd scores to those of experts and show that crowds can produce matrices with over 90% of cells scored correctly while reducing the number of cells to be scored by experts by 50%. Preparation time, including image collection and processing, for a crowdsourcing experiment is significant, and does not currently save time of scientific experts overall. However, if innovations in automation or robotics can reduce such effort, then large-scale implementation of our method could greatly increase the collective scientific knowledge of species phenotypes for phylogenetic tree building. For the field of crowdsourcing, we provide a rare study with ground truth, or an experimental control that many studies lack, and contribute new methods on how to coordinate the work of experts and nonexperts. We show that there are important instances in which crowd consensus is not a good proxy for correctness.
Assuntos
Classificação/métodos , Crowdsourcing/normas , Filogenia , Animais , Fenótipo , Competência Profissional , Reprodutibilidade dos TestesRESUMO
The vast abundance of terpene natural products in nature is due to enzymes known as terpene synthases (TPSs) that convert acyclic prenyl diphosphate precursors into a multitude of cyclic and acyclic carbon skeletons. Yet the evolution of TPSs is not well understood at higher levels of classification. Microbial TPSs from bacteria and fungi are only distantly related to typical plant TPSs, whereas genes similar to microbial TPS genes have been recently identified in the lycophyte Selaginella moellendorffii The goal of this study was to investigate the distribution, evolution, and biochemical functions of microbial terpene synthase-like (MTPSL) genes in other plants. By analyzing the transcriptomes of 1,103 plant species ranging from green algae to flowering plants, putative MTPSL genes were identified predominantly from nonseed plants, including liverworts, mosses, hornworts, lycophytes, and monilophytes. Directed searching for MTPSL genes in the sequenced genomes of a wide range of seed plants confirmed their general absence in this group. Among themselves, MTPSL proteins from nonseed plants form four major groups, with two of these more closely related to bacterial TPSs and the other two to fungal TPSs. Two of the four groups contain a canonical aspartate-rich "DDxxD" motif. The third group has a "DDxxxD" motif, and the fourth group has only the first two "DD" conserved in this motif. Upon heterologous expression, representative members from each of the four groups displayed diverse catalytic functions as monoterpene and sesquiterpene synthases, suggesting these are important for terpene formation in nonseed plants.
Assuntos
Alquil e Aril Transferases/genética , Evolução Molecular , Filogenia , Transcriptoma/genética , Clorófitas/genética , Mapeamento Cromossômico , Embriófitas/genética , Perfilação da Expressão Gênica , Proteínas de Plantas/genética , Sementes/genéticaRESUMO
The carbohydrate-rich cell walls of land plants and algae have been the focus of much interest given the value of cell wall-based products to our current and future economies. Hydroxyproline-rich glycoproteins (HRGPs), a major group of wall glycoproteins, play important roles in plant growth and development, yet little is known about how they have evolved in parallel with the polysaccharide components of walls. We investigate the origins and evolution of the HRGP superfamily, which is commonly divided into three major multigene families: the arabinogalactan proteins (AGPs), extensins (EXTs), and proline-rich proteins. Using motif and amino acid bias, a newly developed bioinformatics pipeline, we identified HRGPs in sequences from the 1000 Plants transcriptome project (www.onekp.com). Our analyses provide new insights into the evolution of HRGPs across major evolutionary milestones, including the transition to land and the early radiation of angiosperms. Significantly, data mining reveals the origin of glycosylphosphatidylinositol (GPI)-anchored AGPs in green algae and a 3- to 4-fold increase in GPI-AGPs in liverworts and mosses. The first detection of cross-linking (CL)-EXTs is observed in bryophytes, which suggests that CL-EXTs arose though the juxtaposition of preexisting SPn EXT glycomotifs with refined Y-based motifs. We also detected the loss of CL-EXT in a few lineages, including the grass family (Poaceae), that have a cell wall composition distinct from other monocots and eudicots. A key challenge in HRGP research is tracking individual HRGPs throughout evolution. Using the 1000 Plants output, we were able to find putative orthologs of Arabidopsis pollen-specific GPI-AGPs in basal eudicots.
Assuntos
Evolução Molecular , Glicoproteínas/metabolismo , Hidroxiprolina/metabolismo , Proteínas de Plantas/genética , Plantas/genética , Transcriptoma/genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Glicoproteínas/química , Glicoproteínas/genética , Glicosilfosfatidilinositóis , Funções Verossimilhança , Mucoproteínas/metabolismo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Fatores de TempoRESUMO
PREMISE OF THE STUDY: We present the first plastome phylogeny encompassing all 77 monocot families, estimate branch support, and infer monocot-wide divergence times and rates of species diversification. METHODS: We conducted maximum likelihood analyses of phylogeny and BAMM studies of diversification rates based on 77 plastid genes across 545 monocots and 22 outgroups. We quantified how branch support and ascertainment vary with gene number, branch length, and branch depth. KEY RESULTS: Phylogenomic analyses shift the placement of 16 families in relation to earlier studies based on four plastid genes, add seven families, date the divergence between monocots and eudicots+Ceratophyllum at 136 Mya, successfully place all mycoheterotrophic taxa examined, and support recognizing Taccaceae and Thismiaceae as separate families and Arecales and Dasypogonales as separate orders. Only 45% of interfamilial divergences occurred after the Cretaceous. Net species diversification underwent four large-scale accelerations in PACMAD-BOP Poaceae, Asparagales sister to Doryanthaceae, Orchidoideae-Epidendroideae, and Araceae sister to Lemnoideae, each associated with specific ecological/morphological shifts. Branch ascertainment and support across monocots increase with gene number and branch length, and decrease with relative branch depth. Analysis of entire plastomes in Zingiberales quantifies the importance of non-coding regions in identifying and supporting short, deep branches. CONCLUSIONS: We provide the first resolved, well-supported monocot phylogeny and timeline spanning all families, and quantify the significant contribution of plastome-scale data to resolving short, deep branches. We outline a new functional model for the evolution of monocots and their diagnostic morphological traits from submersed aquatic ancestors, supported by convergent evolution of many of these traits in aquatic Hydatellaceae (Nymphaeales).
Assuntos
Especiação Genética , Genomas de Plastídeos , Magnoliopsida/genética , Filogenia , DNA Intergênico , Zingiberales/genéticaRESUMO
Colonization of land by plants was a major transition on Earth, but the developmental and genetic innovations required for this transition remain unknown. Physiological studies and the fossil record strongly suggest that the ability of the first land plants to form symbiotic associations with beneficial fungi was one of these critical innovations. In angiosperms, genes required for the perception and transduction of diffusible fungal signals for root colonization and for nutrient exchange have been characterized. However, the origin of these genes and their potential correlation with land colonization remain elusive. A comprehensive phylogenetic analysis of 259 transcriptomes and 10 green algal and basal land plant genomes, coupled with the characterization of the evolutionary path leading to the appearance of a key regulator, a calcium- and calmodulin-dependent protein kinase, showed that the symbiotic signaling pathway predated the first land plants. In contrast, downstream genes required for root colonization and their specific expression pattern probably appeared subsequent to the colonization of land. We conclude that the most recent common ancestor of extant land plants and green algae was preadapted for symbiotic associations. Subsequent improvement of this precursor stage in early land plants through rounds of gene duplication led to the acquisition of additional pathways and the ability to form a fully functional arbuscular mycorrhizal symbiosis.
Assuntos
Adaptação Biológica/genética , Evolução Biológica , Clorófitas/genética , Embriófitas/genética , Filogenia , Simbiose/genética , Adaptação Biológica/fisiologia , Sequência de Bases , Clorófitas/fisiologia , Closterium/genética , Closterium/crescimento & desenvolvimento , Primers do DNA/genética , Embriófitas/fisiologia , Fungos/fisiologia , Hepatófitas/genética , Hepatófitas/crescimento & desenvolvimento , Funções Verossimilhança , Medicago truncatula/microbiologia , Modelos Genéticos , Dados de Sequência Molecular , Micorrizas/fisiologia , Proteínas de Plantas/genética , Raízes de Plantas/microbiologia , RNA de Plantas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de RNA , Spirogyra/genética , Spirogyra/crescimento & desenvolvimento , Simbiose/fisiologiaRESUMO
BACKGROUND: Strigolactones (SLs) are a class of plant hormones that control many aspects of plant growth. The SL signalling mechanism is homologous to that of karrikins (KARs), smoke-derived compounds that stimulate seed germination. In angiosperms, the SL receptor is an α/ß-hydrolase known as DWARF14 (D14); its close homologue, KARRIKIN INSENSITIVE2 (KAI2), functions as a KAR receptor and likely recognizes an uncharacterized, endogenous signal ('KL'). Previous phylogenetic analyses have suggested that the KAI2 lineage is ancestral in land plants, and that canonical D14-type SL receptors only arose in seed plants; this is paradoxical, however, as non-vascular plants synthesize and respond to SLs. RESULTS: We have used a combination of phylogenetic and structural approaches to re-assess the evolution of the D14/KAI2 family in land plants. We analysed 339 members of the D14/KAI2 family from land plants and charophyte algae. Our phylogenetic analyses show that the divergence between the eu-KAI2 lineage and the DDK (D14/DLK2/KAI2) lineage that includes D14 occurred very early in land plant evolution. We show that eu-KAI2 proteins are highly conserved, and have unique features not found in DDK proteins. Conversely, we show that DDK proteins show considerable sequence and structural variation to each other, and lack clearly definable characteristics. We use homology modelling to show that the earliest members of the DDK lineage structurally resemble KAI2 and that SL receptors in non-seed plants likely do not have D14-like structure. We also show that certain groups of DDK proteins lack the otherwise conserved MORE AXILLARY GROWTH2 (MAX2) interface, and may thus function independently of MAX2, which we show is highly conserved throughout land plant evolution. CONCLUSIONS: Our results suggest that D14-like structure is not required for SL perception, and that SL perception has relatively relaxed structural requirements compared to KAI2-mediated signalling. We suggest that SL perception gradually evolved by neo-functionalization within the DDK lineage, and that the transition from KAI2-like to D14-like protein may have been driven by interactions with protein partners, rather than being required for SL perception per se.
Assuntos
Evolução Molecular , Hidrolases/genética , Lactonas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Transdução de Sinais , Carofíceas , Embriófitas , Hidrolases/metabolismo , Filogenia , Proteínas de Plantas/metabolismoRESUMO
Ferns are well known for their shade-dwelling habits. Their ability to thrive under low-light conditions has been linked to the evolution of a novel chimeric photoreceptor--neochrome--that fuses red-sensing phytochrome and blue-sensing phototropin modules into a single gene, thereby optimizing phototropic responses. Despite being implicated in facilitating the diversification of modern ferns, the origin of neochrome has remained a mystery. We present evidence for neochrome in hornworts (a bryophyte lineage) and demonstrate that ferns acquired neochrome from hornworts via horizontal gene transfer (HGT). Fern neochromes are nested within hornwort neochromes in our large-scale phylogenetic reconstructions of phototropin and phytochrome gene families. Divergence date estimates further support the HGT hypothesis, with fern and hornwort neochromes diverging 179 Mya, long after the split between the two plant lineages (at least 400 Mya). By analyzing the draft genome of the hornwort Anthoceros punctatus, we also discovered a previously unidentified phototropin gene that likely represents the ancestral lineage of the neochrome phototropin module. Thus, a neochrome originating in hornworts was transferred horizontally to ferns, where it may have played a significant role in the diversification of modern ferns.
Assuntos
Briófitas/genética , Gleiquênias/genética , Transferência Genética Horizontal , Fotorreceptores de Plantas/genética , Proteínas de Algas/genética , Anthocerotophyta/genética , Sequência de Bases , DNA de Plantas/genética , Evolução Molecular , Genes de Plantas , Dados de Sequência Molecular , Fototropinas/genética , Filogenia , Fitocromo/genética , Proteínas Recombinantes de Fusão/genética , Transcriptoma , Xantofilas/genéticaRESUMO
Reconstructing the origin and evolution of land plants and their algal relatives is a fundamental problem in plant phylogenetics, and is essential for understanding how critical adaptations arose, including the embryo, vascular tissue, seeds, and flowers. Despite advances in molecular systematics, some hypotheses of relationships remain weakly resolved. Inferring deep phylogenies with bouts of rapid diversification can be problematic; however, genome-scale data should significantly increase the number of informative characters for analyses. Recent phylogenomic reconstructions focused on the major divergences of plants have resulted in promising but inconsistent results. One limitation is sparse taxon sampling, likely resulting from the difficulty and cost of data generation. To address this limitation, transcriptome data for 92 streptophyte taxa were generated and analyzed along with 11 published plant genome sequences. Phylogenetic reconstructions were conducted using up to 852 nuclear genes and 1,701,170 aligned sites. Sixty-nine analyses were performed to test the robustness of phylogenetic inferences to permutations of the data matrix or to phylogenetic method, including supermatrix, supertree, and coalescent-based approaches, maximum-likelihood and Bayesian methods, partitioned and unpartitioned analyses, and amino acid versus DNA alignments. Among other results, we find robust support for a sister-group relationship between land plants and one group of streptophyte green algae, the Zygnematophyceae. Strong and robust support for a clade comprising liverworts and mosses is inconsistent with a widely accepted view of early land plant evolution, and suggests that phylogenetic hypotheses used to understand the evolution of fundamental plant traits should be reevaluated.
Assuntos
Evolução Molecular , Genoma de Planta/fisiologia , Filogenia , Característica Quantitativa Herdável , Estreptófitas/fisiologia , Transcriptoma/fisiologia , DNA de Plantas/genética , DNA de Plantas/metabolismo , Perfilação da Expressão Gênica , Alinhamento de Sequência , Estreptófitas/classificaçãoRESUMO
BACKGROUND: The ATP-binding cassette (ABC) transporter gene superfamily is ubiquitous among extant organisms and prominently represented in plants. ABC transporters act to transport compounds across cellular membranes and are involved in a diverse range of biological processes. Thus, the applicability to biotechnology is vast, including cancer resistance in humans, drug resistance among vertebrates, and herbicide and other xenobiotic resistance in plants. In addition, plants appear to harbor the highest diversity of ABC transporter genes compared with any other group of organisms. This study applied transcriptome analysis to survey the kingdom-wide ABC transporter diversity in plants and suggest biotechnology applications of this diversity. RESULTS: We utilized sequence similarity-based informatics techniques to infer the identity of ABC transporter gene candidates from 1295 phylogenetically-diverse plant transcriptomes. A total of 97,149 putative (approximately 25 % were full-length) ABC transporter gene members were identified; each RNA-Seq library (plant sample) had 88 ± 30 gene members. As expected, simpler organisms, such as algae, had fewer unique members than vascular land plants. Differences were also noted in the richness of certain ABC transporter subfamilies. Land plants had more unique ABCB, ABCC, and ABCG transporter gene members on average (p < 0.005), and green algae, red algae, and bryophytes had significantly more ABCF transporter gene members (p < 0.005). Ferns had significantly fewer ABCA transporter gene members than all other plant groups (p < 0.005). CONCLUSIONS: We present a transcriptomic overview of ABC transporter gene members across all major plant groups. An increase in the number of gene family members present in the ABCB, ABCC, and ABCD transporter subfamilies may indicate an expansion of the ABC transporter superfamily among green land plants, which include all crop species. The striking difference between the number of ABCA subfamily transporter gene members between ferns and other plant taxa is surprising and merits further investigation. Discussed is the potential exploitation of ABC transporters in plant biotechnology, with an emphasis on crops.
Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Genes de Plantas/genética , Variação Genética/genética , Genoma de Planta/genética , Proteínas de Plantas/genética , Plantas/genética , Biotecnologia/tendências , Mapeamento Cromossômico/métodos , Mineração de Dados/métodos , Bases de Dados de Proteínas , Especificidade da EspécieRESUMO
Despite the extraordinary significance leaves have for life on Earth, their origin and development remain vigorously debated. More than a century of paleobotanical, morphological, and phylogenetic research has still not resolved fundamental questions about leaves. Developmental genetic data are sparse in ferns, and comparative studies of lycophytes and seed plants have reached opposing conclusions on the conservation of a leaf developmental program. We performed phylogenetic and expression analyses of a leaf developmental regulator (Class III HD-Zip genes; C3HDZs) spanning lycophytes and ferns. We show that a duplication and neofunctionalization of C3HDZs probably occurred in the ancestor of euphyllophytes, and that there is a common leaf developmental mechanism conserved between ferns and seed plants. We show C3HDZ expression in lycophyte and fern sporangia and show that C3HDZs have conserved expression patterns during initiation of lateral primordia (leaves or sporangia). This expression is maintained throughout sporangium development in lycophytes and ferns and indicates an ancestral role of C3HDZs in sporangium development. We hypothesize that there is a deep homology of all leaves and that a sporangium-specific developmental program was coopted independently for the development of lycophyte and euphyllophyte leaves. This provides molecular genetic support for a paradigm shift in theories of lycophyte leaf evolution.
Assuntos
Evolução Biológica , Gleiquênias/metabolismo , Proteínas de Homeodomínio/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Sequência Conservada , Gleiquênias/citologia , Gleiquênias/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Modelos Biológicos , Família Multigênica , Filogenia , Folhas de Planta/citologiaRESUMO
Despite progress based on multilocus, phylogenetic studies of the palms (order Arecales, family Arecaceae), uncertainty remains in resolution/support among major clades and for the placement of the palms among the commelinid monocots. Palms and related commelinids represent a classic case of substitution rate heterogeneity that has not been investigated in the genomic era. To address questions of relationships, support and rate variation among palms and commelinid relatives, 39 plastomes representing the palms and related family Dasypogonaceae were generated via genome skimming and integrated within a monocot-wide matrix for phylogenetic and molecular evolutionary analyses. Support was strong for 'deep' relationships among the commelinid orders, among the five palm subfamilies, and among tribes of the subfamily Coryphoideae. Additionally, there was extreme heterogeneity in the plastid substitution rates across the commelinid orders indicated by model based analyses, with c. 22 rate shifts, and significant departure from a global clock. To date, this study represents the most comprehensively sampled matrix of plastomes assembled for monocot angiosperms, providing genome-scale support for phylogenetic relationships of monocot angiosperms, and lays the phylogenetic groundwork for comparative analyses of the drivers and correlates of such drastic differences in substitution rates across a diverse and significant clade.
Assuntos
Arecaceae/genética , Genomas de Plastídeos , Filogenia , Evolução Molecular , Magnoliopsida/genética , Proteínas de Plantas/genéticaRESUMO
The tank-epiphytic clade of berry-fruited bromeliads, also known as the Core Bromelioideae, represents a remarkable event of adaptive radiation within the Bromeliaceae; however, the details of this radiation have been difficult to study because this lineage is plagued with generic delimitation problems. In this study, we used a phylogenetic approach to investigate a well supported, albeit poorly understood, lineage nested within the Core Bromelioideae, here called the "Ronnbergia Alliance". In order to assess the monophyly and phylogenetic relationships of this group, we used three plastid and three nuclear DNA sequence markers combined with a broad sampling across three taxonomic groups and allied species of Aechmea expected to comprise the Ronnbergia Alliance. We combined the datasets to produce a well-supported and resolved phylogenetic hypothesis. Our main results indicated that the Ronnbergia Alliance was a well-supported monophyletic group, sister to the remaining Core Bromelioideae, and it was composed by species of the polyphyletic genera Aechmea, Hohenbergia and Ronnbergia. We identified two major internal lineages with high geographic structure within the Ronnbergia Alliance. The first of these lineages, called the Pacific Clade, contained species of Aechmea and Ronnbergia that occur exclusively from southern Central America to northwestern South America. The second clade, called the Atlantic Clade, contained species of Aechmea, Hohenbergia and Ronnbergia mostly limited to the Atlantic Forest and the Caribbean. We also explored the diagnostic and evolutionary importance of 13 selected characters using ancestral character reconstructions on the phylogenetic hypothesis. We found that the combination of tubular corollas apically spreading and unappendaged ovules had diagnostic value for the Ronnbergia Alliance, whereas flower size, length of the corolla tube, and petal pigmentation and apex were important characters to differentiate the Pacific and Atlantic clades. This study opens new perspectives for future taxonomic reorganizations and provides a framework for evolutionary and biogeographic studies.
Assuntos
Bromeliaceae/anatomia & histologia , Bromeliaceae/classificação , Filogenia , Oceano Atlântico , Teorema de Bayes , Bromeliaceae/genética , Núcleo Celular/genética , DNA de Cloroplastos/genética , DNA de Plantas/genética , Bases de Dados de Ácidos Nucleicos , Geografia , Funções Verossimilhança , Oceano Pacífico , Análise de Sequência de DNA , Especificidade da EspécieRESUMO
Palms (Arecaceae) include economically important species such as coconut, date palm, and oil palm. Resolution of the palm phylogeny has been problematic due to rapid diversification and slow rates of molecular evolution. The focus of this study is on relationships of the 14 tribes of subfamily Arecoideae and their inferred ancestral areas. A targeted sequencing approach was used to generate a data set of 168 single/low copy nuclear genes for 34 species representing the Arecoideae tribes and the other palm subfamilies. Species trees from the concatenated and coalescent based analyses recovered largely congruent topologies. Three major tribal clades were recovered: the POS clade (Podococceae, Oranieae, Sclerospermeae), the RRC clade (Roystoneeae, Reinhardtieae, Cocoseae), and the core arecoid clade (Areceae, Euterpeae, Geonomateae, Leopoldinieae, Manicarieae, Pelagodoxeae). Leopoldinieae was sister to the rest of the core arecoids (Geonomateae, Manicarieae+Pelagodoxeae, and Areceae+Euterpeae). The nuclear phylogeny supported a North American origin for subfamily Arecoideae, with most tribal progenitors diversifying within the Americas. The POS clade may have dispersed from the Americas into Africa, with tribe Oranieae subsequently spreading into the Indo-Pacific. Two independent dispersals into the Indo-Pacific were inferred for two tribes within the core arecoids (tribes Areceae and Pelagodoxeae).