Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Technol ; 56(23): 17352-17363, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36395268

RESUMO

Selective ion separations are increasingly needed to combat water scarcity, recover resources from wastewater, and enable the efficient recycling of electronics waste. Emulsion liquid membranes (ELMs) have received interest due to rapid kinetics, high selectivities, and low solvent requirements but are too unstable for industrial usage. We demonstrate that polymeric microcapsules can serve as robust, solvent-free mimics of ELMs. As a proof of concept, we incorporated the copper-selective ligand Lix 84-I in the walls of microcapsules formed from a commercial polystyrene-b-polybutadiene-b-polystyrene triblock polymer. The microcapsules were formed from a double-emulsion template, resulting in particles typically 20-120 µm in diameter that encapsulated even smaller droplets of a dilute (≤0.5 M) H2SO4 solution. Batch experiments demonstrated facilitated-transport behavior, with equilibrium reached in as little as 10 min for microcapsules with 1% ligand, and with ∼15-fold selectivity for Cu2+ over Ni2+. Furthermore, the microcapsules could be packed readily in columns for flow-through operation, thus enabling near-complete Cu2+ removal in ∼2 min under certain conditions, recovery of Cu2+ by flowing through fresh dilute H2SO4, and reuse for at least 10 cycles. The approach in this work can serve as a template for using selective ligands to enable robust and simple flow-through processes for a variety of selective ion separations.


Assuntos
Polímeros , Poliestirenos , Cápsulas , Emulsões , Ligantes , Solventes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA