Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; 17(32): e2101641, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34212489

RESUMO

As the lightest solid element and also the simplest metal, lithium (Li) is one of the best representations of quasi-free electron model in both bulk form and the reduced dimensions. Herein, the controlled growth of 2D ultrathin Li nanosheets is demonstrated by utilizing an in situ electrochemical platform built inside transmission electron microscope (TEM). The as-grown freestanding 2D Li nanosheets have strong structure-anisotropy with large lateral dimensions up to several hundreds of nanometers and thickness limited to just a few nanometers. The nanoscale dynamics of nanosheets growth are unraveled by in situ TEM imaging in real-time. Further density-functional theory calculations indicate that oxygen molecules play an important role in directing the anisotropic 2D growth of Li nanosheets through controlling the growth kinetics by their facet-specific capping. The plasmonic optical properties of the as-grown Li nanosheets are probed by cathodoluminescence spectroscopy equipped within TEM, and a broadband visible emission is observed that contains contributions of both in-plane and out-of-plane plasmon resonance modes.

2.
Nat Commun ; 13(1): 5932, 2022 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-36209274

RESUMO

The reactions of CO2 in water under extreme pressure-temperature conditions are of great importance to the carbon storage and transport below Earth's surface, which substantially affect the carbon budget in the atmosphere. Previous studies focus on the CO2(aq) solutions in the bulk phase, but underground aqueous solutions are often confined to the nanoscale, and nanoconfinement and solid-liquid interfaces may substantially affect chemical speciation and reaction mechanisms, which are poorly known on the molecular scale. Here, we apply extensive ab initio molecular dynamics simulations to study aqueous carbon solutions nanoconfined by graphene and stishovite (SiO2) at 10 GPa and 1000 ~ 1400 K. We find that CO2(aq) reacts more in nanoconfinement than in bulk. The stishovite-water interface makes the solutions more acidic, which shifts the chemical equilibria, and the interface chemistry also significantly affects the reaction mechanisms. Our findings suggest that CO2(aq) in deep Earth is more active than previously thought, and confining CO2 and water in nanopores may enhance the efficiency of mineral carbonation.

3.
J Phys Chem Lett ; 12(17): 4292-4298, 2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-33928781

RESUMO

The water-gas shift reaction is one of the most important reactions in industrial hydrogen production and plays a key role in Fischer-Tropsch-type synthesis, which is widely believed to generate hydrocarbons in the deep carbon cycle but is little known at extreme pressure-temperature conditions found in the Earth's upper mantle. Here, we performed extensive ab initio molecular dynamics simulations and free energy calculations to study the water-gas shift reaction. We found the direct formation of formic acid from CO and supercritical water at 10-13 GPa and 1400 K without any catalyst. Contrary to the common assumption that formic acid or formate is an intermediate product, we found that HCOOH is thermodynamically more stable than the products of the water-gas shift reaction above 3 GPa and at 1000-1400 K. Our study suggests that the water-gas shift reaction may not happen in the Earth's upper mantle, and formic acid or formate may be an important carbon carrier in reducing environments, participating in many geochemical processes in deep Earth.

4.
J Phys Chem Lett ; 10(17): 5135-5141, 2019 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-31411889

RESUMO

The chemistry of carbon in aqueous fluids at extreme pressure and temperature conditions is of great importance to Earth's deep carbon cycle, which substantially affects the carbon budget at Earth's surface and global climate change. At ambient conditions, the concentration of carbonic acid in water is negligible; therefore, aqueous carbonic acid was simply ignored in previous geochemical models. However, by applying extensive ab initio molecular dynamics simulations at pressure and temperature conditions similar to those in Earth's upper mantle, we found that carbonic acid can be the most abundant carbon species in aqueous CO2 solutions at ∼10 GPa and 1000 K. The mole percent of carbonic acid in total dissolved carbon species increases with increasing pressure along an isotherm, while its mole percent decreases with increasing temperature along an isobar. In CO2-rich solutions, we found significant proton transfer between carbonic acid molecules and bicarbonate ions, which may enhance the conductivity of the solutions. The effects of pH buffering by carbonic acid may play an important role in water-rock interactions in Earth's interior. Our findings suggest that carbonic acid is an important carbon carrier in the deep carbon cycle.

5.
Nanoscale ; 11(28): 13552-13557, 2019 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-31290511

RESUMO

Monolayer transition metal dichalcogenides (TMDCs) are an ideal platform for multi-carrier bound states, the excitons and trions of which have been well identified and investigated. However, the formation and identification of biexcitons with certain configurations are more complicated. Here, we report a strategy to generate the hole-trion bound state, i.e. excited-state biexcitons, in a graphene/WS2 van der Waals heterostructure, the formation of which is attributed to the charge transfer and exciton dissociation at the hetero-interface. The biexciton nature is confirmed by excitation-power dependent, helicity-resolved, and time-resolved photoluminescence measurements. This hole-trion bound state features a thermal activation energy of ∼32 meV, rendering a stable excited-state biexciton emission up to 330 K. Moreover, the emission behavior of the excited-state biexcitons can be tuned by modifying the charge transfer process at the hetero-interface via electrostatic gating. Our results will benefit to further understanding the complex multi-carrier interactions in 2D semiconductors and related heterostructures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA