Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Bioelectrochemistry ; 128: 83-93, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30959398

RESUMO

Microbial electrosynthesis is a bioprocess where microbes reduce CO2 into multicarbon chemicals with electrons derived from the cathode of a bioelectrochemical reactor. Developing a highly productive microbial electrosynthesis reactor requires excellent electrical connection between the electrochemical setup, the cathode, and the microbes. Copper is a highly conductive cathode material widely employed in electrochemical apparatuses. However, the antimicrobial properties of copper limit its usage for bioelectrochemistry. Here, biocompatible reduced graphene oxide coated on copper foam is synthesized as a cathode material for the microbial electrosynthesis of acetate from CO2. Dense and electroactive Sporomusa ovata biofilms form on the surface of reduced graphene oxide-coated copper foam electrodes while only scattered and damaged cells cover uncoated copper electrodes. Besides the formation of metabolically-active biofilms, acetate production rate from CO2 is 21.3 and 43.5-fold higher with this novel composite cathode compared with an uncoated copper foam cathode and a reversed cathode made of reduced graphene oxide foam coated with copper, respectively. The results demonstrate that reduced graphene oxide can be employed as a biocompatible and conductive buffer between microbes and bactericidal electrode materials with excellent electrochemical property to enable highly performant microbial electrosynthesis.


Assuntos
Acetatos/química , Fontes de Energia Bioelétrica , Reatores Biológicos , Dióxido de Carbono/química , Cobre/química , Técnicas Eletroquímicas/instrumentação , Eletrodos , Grafite/química , Veillonellaceae/metabolismo , Materiais Biocompatíveis , Biofilmes , Oxirredução , Veillonellaceae/crescimento & desenvolvimento
2.
Nat Commun ; 8(1): 47, 2017 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-28663540

RESUMO

The ability to fabricate nanoscale domains of uniform size in two-dimensional materials could potentially enable new applications in nanoelectronics and the development of innovative metamaterials. However, achieving even minimal control over the growth of two-dimensional lateral heterostructures at such extreme dimensions has proven exceptionally challenging. Here we show the spontaneous formation of ordered arrays of graphene nano-domains (dots), epitaxially embedded in a two-dimensional boron-carbon-nitrogen alloy. These dots exhibit a strikingly uniform size of 1.6 ± 0.2 nm and strong ordering, and the array periodicity can be tuned by adjusting the growth conditions. We explain this behaviour with a model incorporating dot-boundary energy, a moiré-modulated substrate interaction and a long-range repulsion between dots. This new two-dimensional material, which theory predicts to be an ordered composite of uniform-size semiconducting graphene quantum dots laterally integrated within a larger-bandgap matrix, holds promise for novel electronic and optoelectronic properties, with a variety of potential device applications.The nanoscale patterning of two-dimensional materials offers the possibility of novel optoelectronic properties; however, it remains challenging. Here, Camilli et al. show the self-assembly of large arrays of highly-uniform graphene dots imbedded in a BCN matrix, enabling novel devices.

3.
Nat Commun ; 8(1): 1155, 2017 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-29061962

RESUMO

Change History: A correction to this article has been published and is linked from the HTML version of this article.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA