Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Genes Dev ; 28(7): 749-64, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24696456

RESUMO

The Drosophila protein brain tumor (Brat) forms a complex with Pumilio (Pum) and Nanos (Nos) to repress hunchback (hb) mRNA translation at the posterior pole during early embryonic development. It is currently thought that complex formation is initiated by Pum, which directly binds the hb mRNA and subsequently recruits Nos and Brat. Here we report that, in addition to Pum, Brat also directly interacts with the hb mRNA. We identify Brat-binding sites distinct from the Pum consensus motif and show that RNA binding and translational repression by Brat do not require Pum, suggesting so far unrecognized Pum-independent Brat functions. Using various biochemical and biophysical methods, we also demonstrate that the NHL (NCL-1, HT2A, and LIN-41) domain of Brat, a domain previously believed to mediate protein-protein interactions, is a novel, sequence-specific ssRNA-binding domain. The Brat-NHL domain folds into a six-bladed ß propeller, and we identify its positively charged top surface as the RNA-binding site. Brat belongs to the functional diverse TRIM (tripartite motif)-NHL protein family. Using structural homology modeling, we predict that the NHL domains of all TRIM-NHL proteins have the potential to bind RNA, indicating that Brat is part of a conserved family of RNA-binding proteins.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Insetos/química , Modelos Moleculares , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Sítios de Ligação , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/classificação , Drosophila melanogaster/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Dados de Sequência Molecular , Mutação , Filogenia , Estrutura Terciária de Proteína , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Alinhamento de Sequência , Fatores de Transcrição/genética
2.
RNA ; 22(3): 383-96, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26769856

RESUMO

In the microRNA (miRNA) pathway, Dicer processes precursors to mature miRNAs. For efficient processing, double-stranded RNA-binding proteins support Dicer proteins. In flies, Loquacious (Loqs) interacts with Dicer1 (dmDcr1) to facilitate miRNA processing. Here, we have solved the structure of the third double-stranded RNA-binding domain (dsRBD) of Loqs and define specific structural elements that interact with dmDcr1. In addition, we show that the linker preceding dsRBD3 contributes significantly to dmDcr1 binding. Furthermore, our structural work demonstrates that the third dsRBD of Loqs forms homodimers. Mutations in the dimerization interface abrogate dmDcr1 interaction. Loqs, however, binds to dmDcr1 as a monomer using the identified dimerization surface, which suggests that Loqs might form dimers under conditions where dmDcr1 is absent or not accessible. Since critical sequence elements are conserved, we suggest that dimerization might be a general feature of dsRBD proteins in gene silencing.


Assuntos
Drosophila melanogaster/genética , MicroRNAs/genética , Proteínas de Ligação a RNA/fisiologia , Sequência de Aminoácidos , Animais , Cristalografia por Raios X , Dimerização , Proteínas de Drosophila , Inativação Gênica , Humanos , Dados de Sequência Molecular , Mutação , Ligação Proteica , Conformação Proteica , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Homologia de Sequência de Aminoácidos , Espectrometria de Fluorescência
3.
Nature ; 479(7372): 194-9, 2011 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-22048315

RESUMO

Ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyses the fixation of atmospheric CO(2) in photosynthesis, but tends to form inactive complexes with its substrate ribulose 1,5-bisphosphate (RuBP). In plants, Rubisco is reactivated by the AAA(+) (ATPases associated with various cellular activities) protein Rubisco activase (Rca), but no such protein is known for the Rubisco of red algae. Here we identify the protein CbbX as an activase of red-type Rubisco. The 3.0-Å crystal structure of unassembled CbbX from Rhodobacter sphaeroides revealed an AAA(+) protein architecture. Electron microscopy and biochemical analysis showed that ATP and RuBP must bind to convert CbbX into functionally active, hexameric rings. The CbbX ATPase is strongly stimulated by RuBP and Rubisco. Mutational analysis suggests that CbbX functions by transiently pulling the carboxy-terminal peptide of the Rubisco large subunit into the hexamer pore, resulting in the release of the inhibitory RuBP. Understanding Rubisco activation may facilitate efforts to improve CO(2) uptake and biomass production by photosynthetic organisms.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Rhodobacter sphaeroides/enzimologia , Ribulose-Bifosfato Carboxilase/metabolismo , Trifosfato de Adenosina/metabolismo , Regulação Alostérica/efeitos dos fármacos , Proteínas de Bactérias/genética , Proteínas de Bactérias/ultraestrutura , Dióxido de Carbono/metabolismo , Cristalografia por Raios X , Ativação Enzimática/efeitos dos fármacos , Modelos Moleculares , Multimerização Proteica/efeitos dos fármacos , Estrutura Quaternária de Proteína/efeitos dos fármacos , Ribulosefosfatos/metabolismo , Ribulosefosfatos/farmacologia , Relação Estrutura-Atividade
4.
Photosynth Res ; 119(1-2): 191-201, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23543331

RESUMO

The key photosynthetic, CO2-fixing enzyme Rubisco forms inactivated complexes with its substrate ribulose 1,5-bisphosphate (RuBP) and other sugar phosphate inhibitors. The independently evolved AAA+ proteins Rubisco activase and CbbX harness energy from ATP hydrolysis to remodel Rubisco complexes, facilitating release of these inhibitors. Here, we discuss recent structural and mechanistic advances towards the understanding of protein-mediated Rubisco activation. Both activating proteins appear to form ring-shaped hexameric arrangements typical for AAA+ ATPases in their functional form, but display very different regulatory and biochemical properties. Considering the thermolability of the plant enzyme, an improved understanding of the mechanism for Rubisco activation may help in developing heat-resistant plants adapted to the challenge of global warming.


Assuntos
Dióxido de Carbono/metabolismo , Fotossíntese/fisiologia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Biotecnologia/métodos , Biotecnologia/tendências , Conformação Proteica , Fosfatos Açúcares/metabolismo , Temperatura
5.
Cell Rep ; 13(6): 1206-1220, 2015 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-26527002

RESUMO

TRIM-NHL proteins are conserved among metazoans and control cell fate decisions in various stem cell linages. The Drosophila TRIM-NHL protein Brain tumor (Brat) directs differentiation of neuronal stem cells by suppressing self-renewal factors. Brat is an RNA-binding protein and functions as a translational repressor. However, it is unknown which RNAs Brat regulates and how RNA-binding specificity is achieved. Using RNA immunoprecipitation and RNAcompete, we identify Brat-bound mRNAs in Drosophila embryos and define consensus binding motifs for Brat as well as a number of additional TRIM-NHL proteins, indicating that TRIM-NHL proteins are conserved, sequence-specific RNA-binding proteins. We demonstrate that Brat-mediated repression and direct RNA-binding depend on the identified motif and show that binding of the localization factor Miranda to the Brat-NHL domain inhibits Brat activity. Finally, to unravel the sequence specificity of the NHL domain, we crystallize the Brat-NHL domain in complex with RNA and present a high-resolution protein-RNA structure of this fold.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas de Drosophila/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Sítios de Ligação , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Dados de Sequência Molecular , Ligação Proteica , RNA Mensageiro/metabolismo
6.
Nat Struct Mol Biol ; 18(12): 1366-70, 2011 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-22056769

RESUMO

Rubisco, the enzyme that catalyzes the fixation of atmospheric CO(2) in photosynthesis, is subject to inactivation by inhibitory sugar phosphates. Here we report the 2.95-Å crystal structure of Nicotiana tabacum Rubisco activase (Rca), the enzyme that facilitates the removal of these inhibitors. Rca from tobacco has a classical AAA(+)-protein domain architecture. Although Rca populates a range of oligomeric states when in solution, it forms a helical arrangement with six subunits per turn when in the crystal. However, negative-stain electron microscopy of the active mutant R294V suggests that Rca functions as a hexamer. The residues determining species specificity for Rubisco are located in a helical insertion of the C-terminal domain and probably function in conjunction with the N-domain in Rubisco recognition. Loop segments exposed toward the central pore of the hexamer are required for the ATP-dependent remodeling of Rubisco, resulting in the release of inhibitory sugar.


Assuntos
Nicotiana/enzimologia , Proteínas de Plantas/química , Ribulose-Bifosfato Carboxilase/metabolismo , Ativador de Plasminogênio Tecidual/química , Sequência de Aminoácidos , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Fotossíntese/fisiologia , Proteínas de Plantas/fisiologia , Estrutura Terciária de Proteína , Alinhamento de Sequência , Ativador de Plasminogênio Tecidual/fisiologia , Nicotiana/metabolismo
7.
Mol Cell ; 26(1): 27-39, 2007 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-17434124

RESUMO

Hsp70 chaperones assist in protein folding, disaggregation, and membrane translocation by binding to substrate proteins with an ATP-regulated affinity that relies on allosteric coupling between ATP-binding and substrate-binding domains. We have studied single- and two-domain versions of the E. coli Hsp70, DnaK, to explore the mechanism of interdomain communication. We show that the interdomain linker controls ATPase activity by binding to a hydrophobic cleft between subdomains IA and IIA. Furthermore, the domains of DnaK dock only when ATP binds and behave independently when ADP is bound. Major conformational changes in both domains accompany ATP-induced docking: of particular importance, some regions of the substrate-binding domain are stabilized, while those near the substrate-binding site become destabilized. Thus, the energy of ATP binding is used to form a stable interface between the nucleotide- and substrate-binding domains, which results in destabilization of regions of the latter domain and consequent weaker substrate binding.


Assuntos
Regulação Alostérica , Proteínas de Escherichia coli/metabolismo , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/metabolismo , Ligantes , Difosfato de Adenosina/química , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Medição da Troca de Deutério , Proteínas de Escherichia coli/química , Interações Hidrofóbicas e Hidrofílicas , Espectroscopia de Ressonância Magnética , Modelos Químicos , Nucleotídeos/química , Estrutura Terciária de Proteína , Relação Estrutura-Atividade , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA