Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 18(8): e1010349, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-36007063

RESUMO

SARS-CoV-2 is a betacoronavirus and the etiological agent of COVID-19, a devastating infectious disease. Due to its far-reaching effect on human health, there is an urgent and growing need to understand the viral molecular biology of SARS-CoV-2 and its interaction with the host cell. SARS-CoV-2 encodes 9 predicted accessory proteins, which are presumed to be dispensable for in vitro replication, most likely having a role in modulating the host cell environment to aid viral replication. Here we show that the ORF6 accessory protein interacts with cellular Rae1 to inhibit cellular protein production by blocking mRNA export. We utilised cell fractionation coupled with mRNAseq to explore which cellular mRNA species are affected by ORF6 expression and show that ORF6 can inhibit the export of many mRNA including those encoding antiviral factors such as IRF1 and RIG-I. We also show that export of these mRNA is blocked in the context of SARS-CoV-2 infection. Together, our studies identify a novel mechanism by which SARS-CoV-2 can manipulate the host cell environment to supress antiviral responses, providing further understanding to the replication strategies of a virus that has caused an unprecedented global health crisis.


Assuntos
COVID-19 , SARS-CoV-2 , Proteínas Virais/metabolismo , Antivirais , COVID-19/genética , Humanos , Imunidade Inata , Proteínas Associadas à Matriz Nuclear , Proteínas de Transporte Nucleocitoplasmático/genética , RNA Mensageiro/genética
2.
PLoS Genet ; 16(6): e1008471, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32525879

RESUMO

Viruses and their hosts are locked in an evolutionary race where resistance to infection is acquired by the hosts while viruses develop strategies to circumvent these host defenses. Forming one arm of the host defense armory are cell autonomous restriction factors like Fv1. Originally described as protecting laboratory mice from infection by murine leukemia virus (MLV), Fv1s from some wild mice have also been found to restrict non-MLV retroviruses, suggesting an important role in the protection against viruses in nature. We surveyed the Fv1 genes of wild mice trapped in Thailand and characterized their restriction activities against a panel of retroviruses. An extra copy of the Fv1 gene, named Fv7, was found on chromosome 6 of three closely related Asian species of mice: Mus caroli, M. cervicolor, and M. cookii. The presence of flanking repeats suggested it arose by LINE-mediated retroduplication within their most recent common ancestor. A high degree of natural variation was observed in both Fv1 and Fv7 and, on top of positive selection at certain residues, insertions and deletions were present that changed the length of the reading frames. These genes exhibited a range of restriction phenotypes, with activities directed against gamma-, spuma-, and lentiviruses. It seems likely, at least in the case of M. caroli, that the observed gene duplication may expand the breadth of restriction beyond the capacity of Fv1 alone and that one or more such viruses have recently driven or continue to drive the evolution of the Fv1 and Fv7 genes.


Assuntos
Evolução Molecular , Duplicação Gênica , Camundongos/genética , Proteínas/genética , Infecções por Retroviridae/genética , Animais , Resistência à Doença/genética , Camundongos/virologia , Retroviridae/patogenicidade , Infecções por Retroviridae/imunologia , Infecções por Retroviridae/virologia
3.
Mol Biol Evol ; 38(6): 2468-2474, 2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-33560369

RESUMO

The genomes of inbred mice harbor around 50 endogenous murine leukemia virus (MLV) loci, although the specific complement varies greatly between strains. The Gv1 locus is known to control the transcription of endogenous MLVs and to be the dominant determinant of cell-surface presentation of MLV envelope, the GIX antigen. Here, we identify a single Krüppel-associated box zinc finger protein (ZFP) gene, Zfp998, as Gv1 and show it to be necessary and sufficient to determine the GIX+ phenotype. By long-read sequencing of bacterial artificial chromosome clones from 129 mice, the prototypic GIX+ strain, we reveal the source of sufficiency and deficiency as splice-acceptor variations and highlight the varying origins of the chromosomal region encompassing Gv1. Zfp998 becomes the second identified ZFP gene responsible for epigenetic suppression of endogenous MLVs in mice and further highlights the prominent role of this gene family in control of endogenous retroviruses.


Assuntos
Retrovirus Endógenos/fisiologia , Interações Hospedeiro-Patógeno/genética , Vírus da Leucemia Murina/fisiologia , Animais , Interações Hospedeiro-Patógeno/imunologia , Camundongos
4.
Genome Res ; 29(10): 1578-1590, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31537638

RESUMO

Dysregulated endogenous retroelements (EREs) are increasingly implicated in the initiation, progression, and immune surveillance of human cancer. However, incomplete knowledge of ERE activity limits mechanistic studies. By using pan-cancer de novo transcript assembly, we uncover the extent and complexity of ERE transcription. The current assembly doubled the number of previously annotated transcripts overlapping with long-terminal repeat (LTR) elements, several thousand of which were expressed specifically in one or a few related cancer types. Exemplified in melanoma, LTR-overlapping transcripts were highly predictable, disease prognostic, and closely linked with molecularly defined subtypes. They further showed the potential to affect disease-relevant genes, as well as produce novel cancer-specific antigenic peptides. This extended view of LTR elements provides the framework for functional validation of affected genes and targets for cancer immunotherapy.


Assuntos
Neoplasias/genética , Retroelementos/genética , Transcriptoma/genética , Perfilação da Expressão Gênica , Humanos , Imunoterapia , Neoplasias/imunologia , Neoplasias/terapia , Filogenia , Retroelementos/imunologia , Sequências Repetidas Terminais/genética , Transcriptoma/imunologia
5.
PLoS Pathog ; 16(5): e1008605, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32453763

RESUMO

As obligate parasites, viruses highjack, modify and repurpose the cellular machinery for their own replication. Viral proteins have, therefore, evolved biological functions, such as signalling potential, that alter host cell physiology in ways that are still incompletely understood. Retroviral envelope glycoproteins interact with several host proteins, extracellularly with their cellular receptor and anti-envelope antibodies, and intracellularly with proteins of the cytoskeleton or sorting, endocytosis and recirculation pathways. Here, we examined the impact of endogenous retroviral envelope glycoprotein expression and interaction with host proteins, particularly antibodies, on the cell, independently of retroviral infection. We found that in the commonly used C57BL/6 substrains of mice, where murine leukaemia virus (MLV) envelope glycoproteins are expressed by several endogenous MLV proviruses, the highest expressed MLV envelope glycoprotein is under the control of an immune-responsive cellular promoter, thus linking MLV envelope glycoprotein expression with immune activation. We further showed that antibody ligation induces extensive internalisation from the plasma membrane into endocytic compartments of MLV envelope glycoproteins, which are not normally subject to constitutive endocytosis. Importantly, antibody binding and internalisation of MLV envelope glycoproteins initiates signalling cascades in envelope-expressing murine lymphocytic cell lines, leading to cellular activation. Similar effects were observed by MLV envelope glycoprotein ligation by its cellular receptor mCAT-1, and by overexpression in human lymphocytic cells, where it required an intact tyrosine-based YXXΦ motif in the envelope glycoprotein cytoplasmic tail. Together, these results suggest that signalling potential is a general property of retroviral envelope glycoproteins and, therefore, a target for intervention.


Assuntos
Anticorpos Antivirais/imunologia , Canais de Cálcio/imunologia , Membrana Celular/imunologia , Endocitose/imunologia , Vírus da Leucemia Murina/imunologia , Canais de Cátion TRPV/imunologia , Proteínas do Envelope Viral/imunologia , Animais , Humanos , Camundongos , Camundongos Endogâmicos BALB C
6.
Proc Natl Acad Sci U S A ; 116(37): 18647-18654, 2019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-31451672

RESUMO

The vertebrate protein SAMHD1 is highly unusual in having roles in cellular metabolic regulation, antiviral restriction, and regulation of innate immunity. Its deoxynucleoside triphosphohydrolase activity regulates cellular dNTP concentration, reducing levels below those required by lentiviruses and other viruses to replicate. To counter this threat, some primate lentiviruses encode accessory proteins that bind SAMHD1 and induce its degradation; in turn, positive diversifying selection has been observed in regions bound by these lentiviral proteins, suggesting that primate SAMHD1 has coevolved to evade these countermeasures. Moreover, deleterious polymorphisms in human SAMHD1 are associated with autoimmune disease linked to uncontrolled DNA synthesis of endogenous retroelements. Little is known about how evolutionary pressures affect these different SAMHD1 functions. Here, we examine the deeper history of these interactions by testing whether evolutionary signatures in SAMHD1 extend to other mammalian groups and exploring the molecular basis of this coevolution. Using codon-based likelihood models, we find positive selection in SAMHD1 within each mammal lineage for which sequence data are available. We observe positive selection at sites clustered around T592, a residue that is phosphorylated to regulate SAMHD1 activity. We verify experimentally that mutations within this cluster affect catalytic rate and lentiviral restriction, suggesting that virus-host coevolution has required adaptations of enzymatic function. Thus, persistent positive selection may have involved the adaptation of SAMHD1 regulation to balance antiviral, metabolic, and innate immunity functions.


Assuntos
Evolução Molecular , Interações Hospedeiro-Patógeno/genética , Imunidade Inata/genética , Proteína 1 com Domínio SAM e Domínio HD/genética , Seleção Genética , Animais , Coevolução Biológica , HIV-1/genética , HIV-1/imunologia , HIV-1/patogenicidade , Interações Hospedeiro-Patógeno/imunologia , Humanos , Modelos Genéticos , Mutação , Fosforilação , Ligação Proteica/genética , Proteína 1 com Domínio SAM e Domínio HD/metabolismo , Tirosina/genética , Tirosina/metabolismo , Proteínas Virais Reguladoras e Acessórias/genética , Replicação Viral/genética , Replicação Viral/imunologia , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/genética
7.
J Gen Virol ; 102(12)2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34939563

RESUMO

Viruses in the family Retroviridae are found in a wide variety of vertebrate hosts. Enveloped virions are 80-100 nm in diameter with an inner core containing the viral genome and replicative enzymes. Core morphology is often characteristic for viruses within the same genus. Replication involves reverse transcription and integration into host cell DNA, resulting in a provirus. Integration into germline cells can result in a heritable provirus known as an endogenous retrovirus. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Retroviridae, which is available at ictv.global/report/retroviridae.


Assuntos
Vírus de DNA/classificação , Retroviridae/classificação , Animais , Vírus de DNA/genética , Vírus de DNA/fisiologia , Vírus de DNA/ultraestrutura , Genoma Viral , Especificidade de Hospedeiro , Retroviridae/genética , Retroviridae/fisiologia , Retroviridae/ultraestrutura , Vertebrados/virologia , Vírion/ultraestrutura , Replicação Viral
8.
Proc Natl Acad Sci U S A ; 115(40): 10130-10135, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30224488

RESUMO

Both exogenous and endogenous retroviruses have long been studied in mice, and some of the earliest mouse studies focused on the heritability of genetic factors influencing permissivity and resistance to infection. The prototypic retroviral restriction factor, Fv1, is now understood to exhibit a degree of control across multiple retroviral genera and is highly diverse within Mus To better understand the age and evolutionary history of Fv1, a comprehensive survey of the Muroidea was conducted, allowing the progenitor integration to be dated to ∼45 million years. Intact coding potential is visible beyond Mus, and sequence analysis reveals strong signatures of positive selection also within field mice, ApodemusFv1's survival for such a period implies a recurring and shifting retroviral burden imparting the necessary selective pressures-an influence likely also common to analogous factors. Regions of Fv1 adapt cooperatively, highlighting its preference for repeated structures and suggesting that this functionally constrained aspect of the retroviral capsid lattice presents a common target in the evolution of intrinsic immunity.


Assuntos
Evolução Molecular , Proteínas/genética , Animais , Camundongos , Murinae
9.
Nature ; 505(7482): 234-8, 2014 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-24336198

RESUMO

Lentiviruses contain accessory genes that have evolved to counteract the effects of host cellular defence proteins that inhibit productive infection. One such restriction factor, SAMHD1, inhibits human immunodeficiency virus (HIV)-1 infection of myeloid-lineage cells as well as resting CD4(+) T cells by reducing the cellular deoxynucleoside 5'-triphosphate (dNTP) concentration to a level at which the viral reverse transcriptase cannot function. In other lentiviruses, including HIV-2 and related simian immunodeficiency viruses (SIVs), SAMHD1 restriction is overcome by the action of viral accessory protein x (Vpx) or the related viral protein r (Vpr) that target and recruit SAMHD1 for proteasomal degradation. The molecular mechanism by which these viral proteins are able to usurp the host cell's ubiquitination machinery to destroy the cell's protection against these viruses has not been defined. Here we present the crystal structure of a ternary complex of Vpx with the human E3 ligase substrate adaptor DCAF1 and the carboxy-terminal region of human SAMHD1. Vpx is made up of a three-helical bundle stabilized by a zinc finger motif, and wraps tightly around the disc-shaped DCAF1 molecule to present a new molecular surface. This adapted surface is then able to recruit SAMHD1 via its C terminus, making it a competent substrate for the E3 ligase to mark for proteasomal degradation. The structure reported here provides a molecular description of how a lentiviral accessory protein is able to subvert the cell's normal protein degradation pathway to inactivate the cellular viral defence system.


Assuntos
Proteínas de Transporte/metabolismo , HIV/química , HIV/fisiologia , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteólise , Proteínas Virais Reguladoras e Acessórias/química , Proteínas Virais Reguladoras e Acessórias/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Transporte/química , Cercocebus atys/virologia , Cristalografia por Raios X , Interações Hospedeiro-Patógeno , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Monoméricas de Ligação ao GTP/química , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Serina-Treonina Quinases , Proteína 1 com Domínio SAM e Domínio HD , Vírus da Imunodeficiência Símia/química , Vírus da Imunodeficiência Símia/fisiologia , Ubiquitina-Proteína Ligases , Ubiquitinação , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/química , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/metabolismo
10.
J Biol Chem ; 293(47): 18378-18386, 2018 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-30282803

RESUMO

The retroviral restriction factor tripartite motif-containing 5α (Trim5α) acts during the early postentry stages of the retroviral life cycle to block infection by a broad range of retroviruses, disrupting reverse transcription and integration. The mechanism of this restriction is poorly understood, but it has recently been suggested to involve recruitment of components of the autophagy machinery, including members of the mammalian autophagy-related 8 (ATG8) family involved in targeting proteins to the autophagosome. To better understand the molecular details of this interaction, here we utilized analytical ultracentrifugation to characterize the binding of six ATG8 isoforms and determined the crystal structure of the Trim5α Bbox coiled-coil region in complex with one member of the mammalian ATG8 proteins, autophagy-related protein LC3 B (LC3B). We found that Trim5α binds all mammalian ATG8s and that, unlike the typical LC3-interacting region (LIR) that binds to mammalian ATG8s through a ß-strand motif comprising approximately six residues, LC3B binds to Trim5α via the α-helical coiled-coil region. The orientation of the structure demonstrated that LC3B could be accommodated within a Trim5α assembly that can bind the retroviral capsid. However, mutation of the binding interface does not affect retroviral restriction. Comparison of the typical linear ß-strand LIR with our atypical helical LIR reveals a conservation of the presentation of residues that are required for the interaction with LC3B. This observation expands the range of LC3B-binding proteins to include helical binding motifs and demonstrates a link between Trim5α and components of the autophagosome.


Assuntos
Família da Proteína 8 Relacionada à Autofagia/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Infecções por HIV/metabolismo , HIV/fisiologia , Proteínas Associadas aos Microtúbulos/metabolismo , Motivos de Aminoácidos , Fatores de Restrição Antivirais , Autofagia , Família da Proteína 8 Relacionada à Autofagia/química , Família da Proteína 8 Relacionada à Autofagia/genética , Proteínas de Transporte/genética , HIV/genética , Infecções por HIV/genética , Infecções por HIV/fisiopatologia , Infecções por HIV/virologia , Células HeLa , Humanos , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/genética , Ligação Proteica , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases
11.
Retrovirology ; 15(1): 59, 2018 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-30153831

RESUMO

Retroviral integration into germline DNA can result in the formation of a vertically inherited proviral sequence called an endogenous retrovirus (ERV). Over the course of their evolution, vertebrate genomes have accumulated many thousands of ERV loci. These sequences provide useful retrospective information about ancient retroviruses, and have also played an important role in shaping the evolution of vertebrate genomes. There is an immediate need for a unified system of nomenclature for ERV loci, not only to assist genome annotation, but also to facilitate research on ERVs and their impact on genome biology and evolution. In this review, we examine how ERV nomenclatures have developed, and consider the possibilities for the implementation of a systematic approach for naming ERV loci. We propose that such a nomenclature should not only provide unique identifiers for individual loci, but also denote orthologous relationships between ERVs in different species. In addition, we propose that-where possible-mnemonic links to previous, well-established names for ERV loci and groups should be retained. We show how this approach can be applied and integrated into existing taxonomic and nomenclature schemes for retroviruses, ERVs and transposable elements.


Assuntos
Retrovirus Endógenos/classificação , Retrovirus Endógenos/genética , Animais , Evolução Molecular , Loci Gênicos , Variação Genética , Genômica , Humanos , Terminologia como Assunto , Vertebrados/genética , Vertebrados/virologia
12.
J Virol ; 91(21)2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28814524

RESUMO

The envelope glycoprotein of diverse endogenous and exogenous retroviruses is considered inherently immunosuppressive. Extensive work mapped the immunosuppressive activity to a highly conserved domain, termed the immunosuppressive domain (ISD), in the transmembrane (TM) subunit of the envelope glycoprotein and identified two naturally polymorphic key residues that afford immunosuppressive activity to distinct envelope glycoproteins. Concurrent mutation of these two key residues (E14R and A20F) in the envelope glycoprotein of the Friend murine leukemia virus (F-MLV) ISD has been reported to abolish its immunosuppressive activity, without affecting its fusogenicity, and to weaken the ability of the virus to replicate specifically in immunocompetent hosts. Here, we show that mutation of these key residues did, in fact, result in a substantial loss of F-MLV infectivity, independently of host immunity, challenging whether associations exist between the two. Notably, a loss of infectivity incurred by the F-MLV mutant with the E14R and A20F double ISD mutation was conditional on expression of the ecotropic envelope receptor murine cationic amino acid transporter-1 (mCAT1) in the virus-producing cell. Indeed, the F-MLV mutant retained infectivity when it was produced by human cells, which naturally lack mCAT1 expression, but not by murine cells. Furthermore, mCAT1 overexpression in human cells impaired the infectivity of both the F-MLV double mutant and the wild-type F-MLV strain, suggesting a finely tuned relationship between the levels of mCAT1 in the producer cell and the infectivity of the virions produced. An adverse effect on this relationship, rather than disruption of the putative ISD, is therefore more likely to explain the loss of F-MLV infectivity incurred by mutations in key ISD residues E14 and A20.IMPORTANCE Retroviruses can interact with their hosts in ways that, although not entirely understood, can greatly influence their pathogenic potential. One such example is a putative immunosuppressive activity, which has been mapped to a conserved domain of the retroviral envelope glycoprotein of several exogenous as well as endogenous retroviruses. In this study, mutations naturally found in some envelope glycoproteins lacking immunosuppressive activity were shown to affect retrovirus infectivity only if the host cell that produced the retrovirus also expressed the cellular entry receptor. These findings shed light on a novel role for this conserved domain in providing the necessary stability to the envelope glycoprotein in order to withstand the interaction with the cellular receptor during virus formation. This function of the domain is critical for further elucidation of the mechanism of immunosuppression mediated by the retroviral envelope glycoprotein.


Assuntos
Vírus da Leucemia Murina de Friend/patogenicidade , Mutação , Infecções por Retroviridae/virologia , Proteínas do Envelope Viral/genética , Sequência de Aminoácidos , Animais , Feminino , Células HEK293 , Humanos , Terapia de Imunossupressão , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Domínios Proteicos , Infecções por Retroviridae/genética , Infecções por Retroviridae/imunologia , Homologia de Sequência
13.
PLoS Pathog ; 12(11): e1005981, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27829070

RESUMO

The Spumaretrovirinae, or foamy viruses (FVs) are complex retroviruses that infect many species of monkey and ape. Despite little sequence homology, FV and orthoretroviral Gag proteins perform equivalent functions, including genome packaging, virion assembly, trafficking and membrane targeting. However, there is a paucity of structural information for FVs and it is unclear how disparate FV and orthoretroviral Gag molecules share the same function. To probe the functional overlap of FV and orthoretroviral Gag we have determined the structure of a central region of Gag from the Prototype FV (PFV). The structure comprises two all α-helical domains NtDCEN and CtDCEN that although they have no sequence similarity, we show they share the same core fold as the N- (NtDCA) and C-terminal domains (CtDCA) of archetypal orthoretroviral capsid protein (CA). Moreover, structural comparisons with orthoretroviral CA align PFV NtDCEN and CtDCEN with NtDCA and CtDCA respectively. Further in vitro and functional virological assays reveal that residues making inter-domain NtDCEN-CtDCEN interactions are required for PFV capsid assembly and that intact capsid is required for PFV reverse transcription. These data provide the first information that relates the Gag proteins of Spuma and Orthoretrovirinae and suggests a common ancestor for both lineages containing an ancient CA fold.


Assuntos
Proteínas do Capsídeo/genética , Produtos do Gene gag/química , Produtos do Gene gag/genética , Spumavirus/genética , Montagem de Vírus/fisiologia , Sequência de Aminoácidos , Animais , Western Blotting , Capsídeo , Linhagem Celular , Humanos , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Reação em Cadeia da Polimerase em Tempo Real
14.
J Immunol ; 197(9): 3628-3638, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27647833

RESUMO

Elucidation of the immune requirements for control or elimination of retroviral infection remains an important aim. We studied the induction of adaptive immunity to neonatal infection with a murine retrovirus, under conditions leading to immunological tolerance. We found that the absence of either maternal or offspring adaptive immunity permitted efficient vertical transmission of the retrovirus. Maternal immunodeficiency allowed the retrovirus to induce central Th cell tolerance in the infected offspring. In turn, this compromised the offspring's ability to mount a protective Th cell-dependent B cell response. However, in contrast to T cells, offspring B cells were not centrally tolerized and retained their ability to respond to the infection when provided with T cell help. Thus, escape of retrovirus-specific B cells from deletional tolerance offers the opportunity to induce protective retroviral immunity by restoration of retrovirus-specific T cell help, suggesting similar T cell immunotherapies for persistent viral infections.


Assuntos
Transferência Adotiva , Linfócitos B/imunologia , Transmissão Vertical de Doenças Infecciosas/prevenção & controle , Vírus da Leucemia Murina/imunologia , Leucemia Experimental/prevenção & controle , Infecções por Retroviridae/prevenção & controle , Linfócitos T/imunologia , Infecções Tumorais por Vírus/prevenção & controle , Animais , Animais Recém-Nascidos , Linfócitos B/transplante , Linfócitos B/virologia , Células Cultivadas , Tolerância Central , Feminino , Leucemia Experimental/imunologia , Masculino , Exposição Materna/efeitos adversos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Gravidez , Infecções por Retroviridae/imunologia , Infecções por Retroviridae/transmissão , Linfócitos T/transplante , Linfócitos T/virologia , Infecções Tumorais por Vírus/imunologia , Infecções Tumorais por Vírus/transmissão
15.
Nature ; 491(7426): 774-8, 2012 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-23103862

RESUMO

The mammalian host has developed a long-standing symbiotic relationship with a considerable number of microbial species. These include the microbiota on environmental surfaces, such as the respiratory and gastrointestinal tracts, and also endogenous retroviruses (ERVs), comprising a substantial fraction of the mammalian genome. The long-term consequences for the host of interactions with these microbial species can range from mutualism to parasitism and are not always completely understood. The potential effect of one microbial symbiont on another is even less clear. Here we study the control of ERVs in the commonly used C57BL/6 (B6) mouse strain, which lacks endogenous murine leukaemia viruses (MLVs) able to replicate in murine cells. We demonstrate the spontaneous emergence of fully infectious ecotropic MLV in B6 mice with a range of distinct immune deficiencies affecting antibody production. These recombinant retroviruses establish infection of immunodeficient mouse colonies, and ultimately result in retrovirus-induced lymphomas. Notably, ERV activation in immunodeficient mice is prevented in husbandry conditions associated with reduced or absent intestinal microbiota. Our results shed light onto a previously unappreciated role for immunity in the control of ERVs and provide a potential mechanistic link between immune activation by microbial triggers and a range of pathologies associated with ERVs, including cancer.


Assuntos
Anticorpos Antivirais/biossíntese , Retrovirus Endógenos/fisiologia , Hospedeiro Imunocomprometido/imunologia , Ativação Viral , Criação de Animais Domésticos , Animais , Anticorpos Antivirais/imunologia , Transformação Celular Viral , Retrovirus Endógenos/genética , Retrovirus Endógenos/crescimento & desenvolvimento , Retrovirus Endógenos/imunologia , Feminino , Leucemia/virologia , Vírus da Leucemia Murina/genética , Vírus da Leucemia Murina/crescimento & desenvolvimento , Vírus da Leucemia Murina/imunologia , Vírus da Leucemia Murina/fisiologia , Linfoma/virologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Antígenos de Linfócitos T/deficiência , Receptores de Antígenos de Linfócitos T/genética , Recombinação Genética , Viremia/imunologia , Viremia/virologia
16.
BMC Struct Biol ; 17(1): 3, 2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28372592

RESUMO

BACKGROUND: The Spumaretrovirinae (foamy viruses) and the Orthoretrovirinae (e.g. HIV) share many similarities both in genome structure and the sequences of the core viral encoded proteins, such as the aspartyl protease and reverse transcriptase. Similarity in the gag region of the genome is less obvious at the sequence level but has been illuminated by the recent solution of the foamy virus capsid (CA) structure. This revealed a clear structural similarity to the orthoretrovirus capsids but with marked differences that left uncertainty in the relationship between the two domains that comprise the structure. METHODS: We have applied protein structure comparison methods in order to try and resolve this ambiguous relationship. These included both the DALI method and the SAP method, with rigorous statistical tests applied to the results of both methods. For this, we employed collections of artificial fold 'decoys' (generated from the pair of native structures being compared) to provide a customised background distribution for each comparison, thus allowing significance levels to be estimated. RESULTS: We have shown that the relationship of the two domains conforms to a simple linear correspondence rather than a domain transposition. These similarities suggest that the origin of both viral capsids was a common ancestor with a double domain structure. In addition, we show that there is also a significant structural similarity between the amino and carboxy domains in both the foamy and ortho viruses. CONCLUSIONS: These results indicate that, as well as the duplication of the double domain capsid, there may have been an even more ancient gene-duplication that preceded the double domain structure. In addition, our structure comparison methodology demonstrates a general approach to problems where the components have a high intrinsic level of similarity.


Assuntos
Capsídeo/química , Evolução Molecular , Duplicação Gênica , Retroviridae/química , Spumavirus/química , Sequência de Aminoácidos , Capsídeo/metabolismo , Genoma Viral , Conformação Proteica , Domínios Proteicos , Retroviridae/fisiologia , Homologia de Sequência , Spumavirus/fisiologia , Montagem de Vírus
17.
PLoS Pathog ; 11(10): e1005194, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26431200

RESUMO

SAMHD1 restricts HIV-1 infection of myeloid-lineage and resting CD4+ T-cells. Most likely this occurs through deoxynucleoside triphosphate triphosphohydrolase activity that reduces cellular dNTP to a level where reverse transcriptase cannot function, although alternative mechanisms have been proposed recently. Here, we present combined structural and virological data demonstrating that in addition to allosteric activation and triphosphohydrolase activity, restriction correlates with the capacity of SAMHD1 to form "long-lived" enzymatically competent tetramers. Tetramer disruption invariably abolishes restriction but has varied effects on in vitro triphosphohydrolase activity. SAMHD1 phosphorylation also ablates restriction and tetramer formation but without affecting triphosphohydrolase steady-state kinetics. However phospho-SAMHD1 is unable to catalyse dNTP turnover under conditions of nucleotide depletion. Based on our findings we propose a model for phosphorylation-dependent regulation of SAMHD1 activity where dephosphorylation switches housekeeping SAMHD1 found in cycling cells to a high-activity stable tetrameric form that depletes and maintains low levels of dNTPs in differentiated cells.


Assuntos
Biocatálise , HIV-1/patogenicidade , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Linhagem Celular , Cromatografia em Gel , Cromatografia Líquida de Alta Pressão , Cristalografia por Raios X , Citometria de Fluxo , Humanos , Proteínas Monoméricas de Ligação ao GTP/química , Fosforilação , Conformação Proteica , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteína 1 com Domínio SAM e Domínio HD , Espectrofotometria Atômica
18.
Nature ; 480(7377): 379-82, 2011 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-22056990

RESUMO

SAMHD1, an analogue of the murine interferon (IFN)-γ-induced gene Mg11 (ref. 1), has recently been identified as a human immunodeficiency virus-1 (HIV-1) restriction factor that blocks early-stage virus replication in dendritic and other myeloid cells and is the target of the lentiviral protein Vpx, which can relieve HIV-1 restriction. SAMHD1 is also associated with Aicardi-Goutières syndrome (AGS), an inflammatory encephalopathy characterized by chronic cerebrospinal fluid lymphocytosis and elevated levels of the antiviral cytokine IFN-α. The pathology associated with AGS resembles congenital viral infection, such as transplacentally acquired HIV. Here we show that human SAMHD1 is a potent dGTP-stimulated triphosphohydrolase that converts deoxynucleoside triphosphates to the constituent deoxynucleoside and inorganic triphosphate. The crystal structure of the catalytic core of SAMHD1 reveals that the protein is dimeric and indicates a molecular basis for dGTP stimulation of catalytic activity against dNTPs. We propose that SAMHD1, which is highly expressed in dendritic cells, restricts HIV-1 replication by hydrolysing the majority of cellular dNTPs, thus inhibiting reverse transcription and viral complementary DNA (cDNA) synthesis.


Assuntos
HIV-1/fisiologia , Proteínas Monoméricas de Ligação ao GTP/química , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Nucleosídeo-Trifosfatase/química , Nucleosídeo-Trifosfatase/metabolismo , Regulação Alostérica , Biocatálise , Domínio Catalítico , Cristalografia por Raios X , Células Dendríticas/metabolismo , Células Dendríticas/virologia , Nucleotídeos de Desoxiadenina/metabolismo , Nucleotídeos de Desoxicitosina/metabolismo , Nucleotídeos de Desoxiguanina/metabolismo , Humanos , Hidrólise , Modelos Biológicos , Modelos Moleculares , Proteínas Monoméricas de Ligação ao GTP/genética , Células Mieloides/virologia , Nucleosídeo-Trifosfatase/genética , Estrutura Terciária de Proteína , Transcrição Reversa , Proteína 1 com Domínio SAM e Domínio HD , Nucleotídeos de Timina/metabolismo , Proteínas Virais Reguladoras e Acessórias/metabolismo , Replicação Viral
19.
Proc Natl Acad Sci U S A ; 111(26): 9609-14, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24979782

RESUMO

Restriction factors (RFs) form important components of host defenses to retroviral infection. The Fv1, Trim5α, and TrimCyp RFs contain N-terminal dimerization and C-terminal specificity domains that target assembled retroviral capsid (CA) proteins enclosing the viral core. However, the molecular detail of the interaction between RFs and their CA targets is unknown. Therefore, we have determined the crystal structure of the B-box and coiled-coil (BCC) region from Trim5α and used small-angle X-ray scattering to examine the solution structure of Trim5α BCC, the dimerization domain of Fv1 (Fv1Ntd), and the hybrid restriction factor Fv1Cyp comprising Fv1NtD fused to the HIV-1 binding protein Cyclophilin A (CypA). These data reveal that coiled-coil regions of Fv1 and Trim5α form extended antiparallel dimers. In Fv1Cyp, two CypA moieties are located at opposing ends, creating a molecule with a dumbbell appearance. In Trim5α, the B-boxes are located at either end of the coiled-coil, held in place by interactions with a helical motif from the L2 region of the opposing monomer. A comparative analysis of Fv1Cyp and CypA binding to a preformed HIV-1 CA lattice reveals how RF dimerization enhances the affinity of interaction through avidity effects. We conclude that the antiparallel organization of the NtD regions of Fv1 and Trim5α dimers correctly positions C-terminal specificity and N-terminal effector domains and facilitates stable binding to adjacent CA hexamers in viral cores.


Assuntos
Capsídeo/metabolismo , HIV-1/metabolismo , Modelos Moleculares , Muramidase/química , Proteínas/química , Internalização do Vírus , Sequência de Aminoácidos , Animais , Bacteriófago T4/enzimologia , Sequência de Bases , Cromatografia em Gel , Cristalização , Dimerização , Escherichia coli , Modelos Lineares , Macaca mulatta , Microscopia Eletrônica , Dados de Sequência Molecular , Conformação Proteica , Proteínas/genética , Proteínas/metabolismo , Proteínas Recombinantes de Fusão/genética , Espalhamento a Baixo Ângulo , Análise de Sequência de DNA , Ressonância de Plasmônio de Superfície , Ubiquitina-Proteína Ligases , Difração de Raios X
20.
Retrovirology ; 13(1): 42, 2016 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-27342974

RESUMO

BACKGROUND: The mouse protein Fv1 is a factor that can confer resistance to retroviral infection. The two major Fv1 alleles from laboratory mice, Fv1 (n) and Fv1 (b) , restrict infection by different murine leukaemia viruses (MLVs). Fv1(n) restricts B-tropic MLV, but not N-tropic MLV or NB-tropic MLV. In cells expressing Fv1(b) at natural levels, only N-MLV is restricted, however restriction of NB-MLV and partial restriction of B-MLV were observed when recombinant Fv1(b) was expressed from an MLV promoter in Fv1 null Mus dunni tail fibroblast cells. To investigate the relationship between expression level and restriction specificity we have developed new retroviral delivery vectors which allow inducible expression of Fv1, and yet allow sufficient production of fluorescent reporter proteins for analysis in our FACS-based restriction assay. RESULTS: We demonstrated that at concentrations close to the endogenous expression level, Fv1(b) specifically restricts only N-MLV, but restriction of NB-MLV, and to a lesser extent B-MLV, could be gained by increasing the protein level of Fv1(b). By contrast, we found that even when Fv1(n) is expressed at very high levels, no significant inhibition of N-MLV or NB-MLV could be observed. Study of Fv1 mutants using this assay led to the identification of determinants for N/B tropism at an expression level close to that of endogenous Fv1(n) and Fv1(b). We also compared the recently described restriction activities of wild mice Fv1 proteins directed against non-MLV retroviruses when expressed at different levels. Fv1 from M. spretus restricted N-MLV, B-MLV and equine infectious anaemia virus equally even at low concentrations, while Fv1 from M. macedonicus showed even stronger restriction against equine infectious anaemia virus than to N-MLV. Restriction of feline foamy virus by Fv1 of M. caroli occurred at levels equivalent to MLV restriction. CONCLUSIONS: Our data indicate that for some but not all Fv1 proteins, gain of restriction activities could be achieved by increasing the expression level of Fv1. However such a concentration dependent effect is not seen with most Fv1s and cannot explain the recently reported activities against non-MLVs. It will be interesting to examine whether overexpression of other capsid binding restriction factors such as TRIM5α or Mx2 result in novel restriction specificities.


Assuntos
Vírus da Leucemia Murina/genética , Vírus da Leucemia Murina/fisiologia , Proteínas/genética , Proteínas/metabolismo , Replicação Viral , Animais , Proteínas do Capsídeo/metabolismo , Linhagem Celular , Vetores Genéticos , Humanos , Camundongos , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA