Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 2365, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38287077

RESUMO

The slab structure and high elevation of the Himalaya-Tibet region and their underlying mechanisms have been widely discussed. Many studies interpret a flat slab segment of Indian continental lithosphere located below the overriding plate, but interpretations of the northward extent of the flat slab differ substantially, with minimum estimates placing the boundary at the northern margin of the Himalaya (Indus-Yarlung Tsangpo suture), and maximum estimates placing it at the northern boundary of Tibet. In this study, we investigate for the first time if a flat slab segment of subducted buoyant Indian continental lithosphere below the Himalaya-Tibet region is geodynamically feasible and we quantify its northward extent, as well as its contribution to the high topography of the region. We conduct three large-scale fully-dynamic (buoyancy-driven) analogue experiments to simulate the subduction of the Indian continent. Our preferred, and geodynamically most feasible, model shows a continental flat slab extending northward up to ~ 320 km from the Himalayan thrust front, in agreement with recent estimates. Furthermore, it suggests that the positively buoyant flat slab segment of the Indian continent contributes some ~ 1.5-2 km to the high topography of the Himalaya-Southern Tibet region by providing an upward force to elevate the overriding Eurasian plate.

2.
Nat Commun ; 10(1): 4480, 2019 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-31578324

RESUMO

The India-Asia collision has formed the highest mountains on Earth and is thought to account for extensive intraplate deformation in Asia. The prevailing explanation considers the role of the Pacific and Sunda subduction zones as passive during deformation. Here we test the hypothesis that subduction played an active role and present geodynamic experiments of continental deformation that model Indian indentation and active subduction rollback. We show that the synchronous activity and interaction of the collision zone and subduction zones explain Asian deformation, and demonstrate that east-west extension in Tibet, eastward continental extrusion and Asian backarc basin formation are controlled by large-scale Pacific and Sunda slab rollback. The models require 1740 ± 300 km of Indian indentation such that backarc basins form and central East Asian extension conforms estimates. Indentation and rollback produce ~260-360 km of eastward extrusion and large-scale clockwise upper mantle circulation from Tibet towards East Asia and back to India.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA