RESUMO
The oral microbiome plays key roles in human biology, health, and disease, but little is known about the global diversity, variation, or evolution of this microbial community. To better understand the evolution and changing ecology of the human oral microbiome, we analyzed 124 dental biofilm metagenomes from humans, including Neanderthals and Late Pleistocene to present-day modern humans, chimpanzees, and gorillas, as well as New World howler monkeys for comparison. We find that a core microbiome of primarily biofilm structural taxa has been maintained throughout African hominid evolution, and these microbial groups are also shared with howler monkeys, suggesting that they have been important oral members since before the catarrhine-platyrrhine split ca. 40 Mya. However, community structure and individual microbial phylogenies do not closely reflect host relationships, and the dental biofilms of Homo and chimpanzees are distinguished by major taxonomic and functional differences. Reconstructing oral metagenomes from up to 100 thousand years ago, we show that the microbial profiles of both Neanderthals and modern humans are highly similar, sharing functional adaptations in nutrient metabolism. These include an apparent Homo-specific acquisition of salivary amylase-binding capability by oral streptococci, suggesting microbial coadaptation with host diet. We additionally find evidence of shared genetic diversity in the oral bacteria of Neanderthal and Upper Paleolithic modern humans that is not observed in later modern human populations. Differences in the oral microbiomes of African hominids provide insights into human evolution, the ancestral state of the human microbiome, and a temporal framework for understanding microbial health and disease.
Assuntos
Evolução Biológica , Ecologia/métodos , Hominidae/microbiologia , Metagenoma/genética , Microbiota/genética , Boca/microbiologia , África , Animais , Bactérias/classificação , Bactérias/genética , Biofilmes , Placa Dentária/microbiologia , Geografia , Gorilla gorilla/microbiologia , Hominidae/classificação , Humanos , Pan troglodytes/microbiologia , FilogeniaRESUMO
In the last few decades, the field of ancient DNA has taken a new direction towards using sedimentary ancient DNA (sedaDNA) for studying human and mammalian population dynamics as well as past ecosystems. However, the screening of numerous sediment samples from archaeological sites remains a time-consuming and costly endeavor, particularly when targeting hominin DNA. Here, we present a novel high-throughput method that facilitates the fast and efficient analysis of sediment samples by applying a pooled testing approach. This method combines multiple extracts, enabling early parallelization of laboratory procedures and effective aDNA screening. Pooled samples with detectable aDNA signals undergo detailed analysis, while empty pools are discarded. We have successfully applied our method to multiple sediment samples from Middle and Upper Paleolithic sites in Europe, Asia, and Africa. Notably, our results reveal that an aDNA signal remains discernible even when pooled with four negative samples. We also demonstrate that the DNA yield of double-stranded libraries increases significantly when reducing the extract input, potentially mitigating the effects of inhibition. By embracing this innovative approach, researchers can analyze large numbers of sediment samples for aDNA preservation, achieving significant cost reductions of up to 70% and reducing hands-on laboratory time to one-fifth.
Assuntos
DNA Antigo , Sedimentos Geológicos , DNA Antigo/análise , Humanos , Animais , Arqueologia/métodos , Fósseis , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Hominidae/genética , Europa (Continente) , ÁfricaRESUMO
Major advances over the past decade in the field of ancient DNA are providing access to past paleogenomic diversity, but the diverse functions and biosynthetic capabilities of this growing paleome remain largely elusive. We investigated the dental calculus of 12 Neanderthals and 52 anatomically modern humans ranging from 100,000 years ago to the present and reconstructed 459 bacterial metagenome-assembled genomes. We identified a biosynthetic gene cluster shared by seven Middle and Upper Paleolithic individuals that allows for the heterologous production of a class of previously unknown metabolites that we name "paleofurans." This paleobiotechnological approach demonstrates that viable biosynthetic machinery can be produced from the preserved genetic material of ancient organisms, allowing access to natural products from the Pleistocene and providing a promising area for natural product exploration.