Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; : 107521, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38950861

RESUMO

Receptor-mediated endocytosis provides a mechanism for the selective uptake of specific molecules thereby controlling the composition of the extracellular environment and biological processes. The low-density lipoprotein receptor-related protein 1 (LRP1) is a widely expressed endocytic receptor that regulates cellular events by modulating the levels of numerous extracellular molecules via rapid endocytic removal. LRP1 also participates in signalling pathways through this modulation as well as in the interaction with membrane receptors and cytoplasmic adaptor proteins. LRP1 single nucleotide polymorphisms are associated with several diseases and conditions such as migraines, aortic aneurysms, cardiopulmonary dysfunction, corneal clouding, and bone dysmorphology and mineral density. Studies using Lrp1 knockout mice revealed a critical, non-redundant and tissue-specific role of LRP1 in regulating various physiological events. However, exactly how LRP1 functions to regulate so many distinct and specific processes is still not fully clear. Our recent proteomics studies have identified more than 300 secreted proteins that either directly interact with LRP1 or are modulated by LRP1 in various tissues. This review will highlight the remarkable ability of this receptor to regulate secreted molecules in a tissue-specific manner and discuss potential mechanisms underpinning such specificity. Uncovering the depth of these "hidden" specific interactions modulated by LRP1 will provide novel insights into a dynamic and complex extracellular environment that is involved in diverse biological and pathological processes.

2.
J Biol Chem ; 300(6): 107313, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38657864

RESUMO

Sortilin-related receptor 1 (SORL1) is an intracellular sorting receptor genetically implicated in Alzheimer's disease (AD) that impacts amyloid precursor protein trafficking. The objective of these studies was to test the hypothesis that SORL1 binds tau, modulates its cellular trafficking and impacts the aggregation of cytoplasmic tau induced by pathological forms of tau. Using surface plasmon resonance measurements, we observed high-affinity binding of tau to SORL1 and the vacuolar protein sorting 10 domain of SORL1. Interestingly, unlike LDL receptor-related protein 1, SORL1 binds tau at both pH 7.4 and pH 5.5, revealing its ability to bind tau at endosomal pH. Immunofluorescence studies confirmed that exogenously added tau colocalized with SORL1 in H4 neuroglioma cells, while overexpression of SORL1 in LDL receptor-related protein 1-deficient Chinese hamster ovary (CHO) cells resulted in a marked increase in the internalization of tau, indicating that SORL1 can bind and mediate the internalization of monomeric forms of tau. We further demonstrated that SORL1 mediates tau seeding when tau RD P301S FRET biosensor cells expressing SORL1 were incubated with high molecular weight forms of tau isolated from the brains of patients with AD. Seeding in H4 neuroglioma cells is significantly reduced when SORL1 is knocked down with siRNA. Finally, we demonstrate that the N1358S mutant of SORL1 significantly increases tau seeding when compared to WT SORL1, identifying for the first time a potential mechanism that connects this specific SORL1 mutation to Alzheimer's disease. Together, these studies identify SORL1 as a receptor that contributes to trafficking and seeding of pathogenic tau.


Assuntos
Cricetulus , Proteínas Relacionadas a Receptor de LDL , Proteínas de Membrana Transportadoras , Proteínas tau , Humanos , Proteínas tau/metabolismo , Proteínas tau/genética , Animais , Células CHO , Proteínas Relacionadas a Receptor de LDL/metabolismo , Proteínas Relacionadas a Receptor de LDL/genética , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Membrana Transportadoras/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Linhagem Celular Tumoral , Ligação Proteica , Transporte Proteico
3.
J Biol Chem ; 296: 100715, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33930462

RESUMO

In Alzheimer's disease (AD), pathological forms of tau are transferred from cell to cell and "seed" aggregation of cytoplasmic tau. Phosphorylation of tau plays a key role in neurodegenerative tauopathies. In addition, apolipoprotein E (apoE), a major component of lipoproteins in the brain, is a genetic risk determinant for AD. The identification of the apoE receptor, low-density lipoprotein receptor-related protein 1 (LRP1), as an endocytic receptor for tau raises several questions about the role of LRP1 in tauopathies: is internalized tau, like other LRP1 ligands, delivered to lysosomes for degradation, and does LRP1 internalize pathological tau leading to cytosolic seeding? We found that LRP1 rapidly internalizes 125I-labeled tau, which is then efficiently degraded in lysosomal compartments. Surface plasmon resonance experiments confirm high affinity binding of tau and the tau microtubule-binding domain to LRP1. Interestingly, phosphorylated forms of recombinant tau bind weakly to LRP1 and are less efficiently internalized by LRP1. LRP1-mediated uptake of tau is inhibited by apoE, with the apoE4 isoform being the most potent inhibitor, likely because of its higher affinity for LRP1. Employing post-translationally-modified tau derived from brain lysates of human AD brain tissue, we found that LRP1-expressing cells, but not LRP1-deficient cells, promote cytosolic tau seeding in a process enhanced by apoE. These studies identify LRP1 as an endocytic receptor that binds and processes monomeric forms of tau leading to its degradation and promotes seeding by pathological forms of tau. The balance of these processes may be fundamental to the spread of neuropathology across the brain in AD.


Assuntos
Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Proteólise , Proteínas tau/metabolismo , Encéfalo/metabolismo , Regulação da Expressão Gênica , Humanos , Transporte Proteico
4.
J Biol Chem ; 297(1): 100842, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34058195

RESUMO

The low-density lipoprotein receptor (LDLR) family of receptors are cell-surface receptors that internalize numerous ligands and play crucial role in various processes, such as lipoprotein metabolism, hemostasis, fetal development, etc. Previously, receptor-associated protein (RAP) was described as a molecular chaperone for LDLR-related protein 1 (LRP1), a prominent member of the LDLR family. We aimed to verify this role of RAP for LRP1 and two other LDLR family receptors, LDLR and vLDLR, and to investigate the mechanisms of respective interactions using a cell culture model system, purified system, and in silico modelling. Upon coexpression of RAP with clusters of the ligand-binding complement repeats (CRs) of the receptors in secreted form in insect cells culture, the isolated proteins had increased yield, enhanced folding, and improved binding properties compared with proteins expressed without RAP, as determined by circular dichroism and surface plasmon resonance. Within LRP1 CR-clusters II and IV, we identified multiple sites comprised of adjacent CR doublets, which provide alternative bivalent binding combinations with specific pairs of lysines on RAP. Mutational analysis of these lysines within each of isolated RAP D1/D2 and D3 domains having high affinity to LRP1 and of conserved tryptophans on selected CR-doublets of LRP1, as well as in silico docking of a model LRP1 CR-triplet with RAP, indicated a universal role for these residues in interaction of RAP and LRP1. Consequently, we propose a new model of RAP interaction with LDLR family receptors based on switching of the bivalent contacts between molecules over time in a dynamic mode.


Assuntos
Proteína Associada a Proteínas Relacionadas a Receptor de LDL/metabolismo , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Dobramento de Proteína , Receptores de LDL/metabolismo , Análise Mutacional de DNA , Humanos , Ligantes , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/química , Simulação de Acoplamento Molecular , Ligação Proteica , Sequências Repetitivas de Aminoácidos
5.
J Biol Chem ; 295(1): 212-222, 2020 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-31792055

RESUMO

It is well-established that complexes of plasminogen-activator inhibitor 1 (PAI-1) with its target enzymes bind tightly to low-density lipoprotein (LDL) receptor-related protein 1 (LRP1), but the molecular details of this interaction are not well-defined. Furthermore, considerable controversy exists in the literature regarding the nature of the interaction of free PAI-1 with LRP1. In this study, we examined the binding of free PAI-1 and complexes of PAI-1 with low-molecular-weight urokinase-type plasminogen activator to LRP1. Our results confirmed that uPA:PAI-1 complexes bind LRP1 with ∼100-fold increased affinity over PAI-1 alone. Chemical modification of PAI-1 confirmed an essential requirement of lysine residues in PAI-1 for the interactions of both PAI-1 and uPA:PAI-1 complexes with LRP1. Results of surface plasmon resonance measurements supported a bivalent binding model in which multiple sites on PAI-1 and uPA:PAI-1 complexes interact with complementary sites on LRP1. An ionic-strength dependence of binding suggested the critical involvement of two charged residues for the interaction of PAI-1 with LRP1 and three charged residues for the interaction of uPA:PAI-1 complexes with LRP1. An enhanced affinity resulting from the interaction of three regions of the uPA:PAI-1 complex with LDLa repeats on LRP1 provided an explanation for the increased affinity of uPA:PAI-1 complexes for LRP1. Mutational analysis revealed an overlap between LRP1 binding and binding of a small-molecule inhibitor of PAI-1, CDE-096, confirming an important role for Lys-207 in the interaction of PAI-1 with LRP1 and of the orientations of Lys-207, -88, and -80 for the interaction of uPA:PAI-1 complexes with LRP1.


Assuntos
Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Inibidor 1 de Ativador de Plasminogênio/química , Substituição de Aminoácidos , Sítios de Ligação , Linhagem Celular , Humanos , Lisina/genética , Inibidor 1 de Ativador de Plasminogênio/genética , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Ligação Proteica
6.
Am J Physiol Heart Circ Physiol ; 320(5): H1786-H1801, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33635167

RESUMO

Thoracic aortic aneurysm and dissection (TAAD) is a deadly disease characterized by intimal disruption induced by hemodynamic forces of the circulation. The effect of exercise in patients with TAAD is largely unknown. ß-Aminopropionitrile (BAPN) is an irreversible inhibitor of lysyl oxidase that induces TAAD in mice. The objective of this study was to investigate the effect of aerobic exercise on BAPN-induced TAAD. Upon weaning, mice were given either BAPN-containing water or standard drinking water and subjected to either conventional cage activity (BAPN-CONV) or forced treadmill exercise (BAPN-EX) for up to 26 wk. Mortality was 23.5% (20/85) for BAPN-CONV mice versus 0% (0/22) for BAPN-EX mice (hazard ratio 3.8; P = 0.01). BAPN induced significant elastic lamina fragmentation and intimal-medial thickening compared with BAPN-untreated controls, and aneurysms were identified in 50% (5/10) of mice that underwent contrast-enhanced CT scanning. Exercise significantly decreased BAPN-induced wall thickening, calculated circumferential wall tension, and lumen diameter, with 0% (0/5) of BAPN-EX demonstrating chronic aortic aneurysm formation on CT scan. Expression of selected genes relevant to vascular diseases was analyzed by qRT-PCR. Notably, exercise normalized BAPN-induced increases in TGF-ß pathway-related genes Cd109, Smad4, and Tgfßr1; inflammation-related genes Vcam1, Bcl2a1, Ccr2, Pparg, Il1r1, Il1r1, Itgb2, and Itgax; and vascular injury- and response-related genes Mmp3, Fn1, and Vwf. Additionally, exercise significantly increased elastin expression in BAPN-treated animals compared with controls. This study suggests that moderate aerobic exercise may be safe and effective in preventing the most devastating outcomes in TAAD.NEW & NOTEWORTHY Moderate aerobic exercise was shown to significantly reduce mortality, extracellular matrix degradation, and thoracic aortic aneurysm and dissection formation associated with lysyl oxidase inhibition in a mouse model. Gene expression suggested a reversal of TGF-ß, inflammation, and extracellular matrix remodeling pathway dysregulation, along with augmented elastogenesis with exercise.


Assuntos
Aorta Torácica/patologia , Aneurisma da Aorta Torácica/terapia , Dissecção Aórtica/terapia , Ruptura Aórtica/prevenção & controle , Terapia por Exercício , Matriz Extracelular/patologia , Remodelação Vascular , Aminopropionitrilo , Dissecção Aórtica/induzido quimicamente , Dissecção Aórtica/metabolismo , Dissecção Aórtica/patologia , Animais , Aorta Torácica/metabolismo , Aorta Torácica/fisiopatologia , Aneurisma da Aorta Torácica/induzido quimicamente , Aneurisma da Aorta Torácica/metabolismo , Aneurisma da Aorta Torácica/patologia , Ruptura Aórtica/induzido quimicamente , Ruptura Aórtica/metabolismo , Ruptura Aórtica/patologia , Dilatação Patológica , Modelos Animais de Doenças , Progressão da Doença , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Regulação da Expressão Gênica , Hemodinâmica , Masculino , Camundongos Endogâmicos C57BL , Proteólise , Transdução de Sinais
7.
Biochemistry ; 59(32): 2922-2933, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32702237

RESUMO

Matrix metalloprotease (MMP) activation contributes to the degradation of the extracellular matrix (ECM), resulting in a multitude of pathologies. Low-density lipoprotein receptor-related protein 1 (LRP1) is a multifaceted endocytic and signaling receptor that is responsible for internalization and lysosomal degradation of diverse proteases, protease inhibitors, and lipoproteins along with numerous other proteins. In this study, we identified MMP-1 as a novel LRP1 ligand. Binding studies employing surface plasmon resonance revealed that both proMMP-1 and active MMP-1 bind to purified LRP1 with equilibrium dissociation constants (KD) of 19 and 25 nM, respectively. We observed that human aortic smooth muscle cells readily internalize and degrade 125I-labeled proMMP-1 in an LRP1-mediated process. Our binding data also revealed that all tissue inhibitors of metalloproteases (TIMPs) bind to LRP1 with KD values ranging from 23 to 33 nM. Interestingly, the MMP-1/TIMP-1 complex bound to LRP1 with an affinity (KD = 0.6 nM) that was 30-fold higher than that of either component alone, revealing that LRP1 prefers the protease:inhibitor complex as a ligand. Of note, modification of lysine residues on either proMMP-1 or TIMP-1 ablated the ability of the MMP-1/TIMP-1 complex to bind to LRP1. LRP1's preferential binding to enzyme:inhibitor complexes was further supported by the higher binding affinity for proMMP-9/TIMP-1 complexes than for either of these two components alone. LRP1 has four clusters of ligand-binding repeats, and MMP-1, TIMP-1, and MMP-1/TIMP-1 complexes bound to cluster III most avidly. Our results reveal an important role for LRP1 in controlling ECM homeostasis by regulating MMP-1 and MMP-9 levels.


Assuntos
Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Metaloproteinase 1 da Matriz/metabolismo , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Animais , Aorta/citologia , Linhagem Celular , Endocitose , Ativação Enzimática , Regulação da Expressão Gênica , Humanos , Masculino , Camundongos , Miócitos de Músculo Liso/metabolismo , Ligação Proteica
8.
Arterioscler Thromb Vasc Biol ; 38(11): 2651-2664, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30354243

RESUMO

Objective- Mutations affecting contractile-related proteins in the ECM (extracellular matrix), microfibrils, or vascular smooth muscle cells can predispose the aorta to aneurysms. We reported previously that the LRP1 (low-density lipoprotein receptor-related protein 1) maintains vessel wall integrity, and smLRP1-/- mice exhibited aortic dilatation. The current study focused on defining the mechanisms by which LRP1 regulates vessel wall function and integrity. Approach and Results- Isometric contraction assays demonstrated that vasoreactivity of LRP1-deficient aortic rings was significantly attenuated when stimulated with vasoconstrictors, including phenylephrine, thromboxane receptor agonist U-46619, increased potassium, and L-type Ca2+ channel ligand FPL-64176. Quantitative proteomics revealed proteins involved in actin polymerization and contraction were significantly downregulated in aortas of smLRP1-/- mice. However, studies with calyculin A indicated that although aortic muscle from smLRP1-/- mice can contract in response to calyculin A, a role for LRP1 in regulating the contractile machinery is not revealed. Furthermore, intracellular calcium imaging experiments identified defects in calcium release in response to a RyR (ryanodine receptor) agonist in smLRP1-/- aortic rings and cultured vascular smooth muscle cells. Conclusions- These results identify a critical role for LRP1 in modulating vascular smooth muscle cell contraction by regulating calcium signaling events that potentially protect against aneurysm development.


Assuntos
Citoesqueleto de Actina/metabolismo , Sinalização do Cálcio , Proteínas do Citoesqueleto/metabolismo , Músculo Liso Vascular/metabolismo , Receptores de LDL/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Vasoconstrição , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/ultraestrutura , Animais , Aorta/metabolismo , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Proteínas do Citoesqueleto/genética , Feminino , Regulação da Expressão Gênica , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Masculino , Camundongos Knockout , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/ultraestrutura , Receptores de LDL/deficiência , Receptores de LDL/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Técnicas de Cultura de Tecidos , Proteínas Supressoras de Tumor/deficiência , Proteínas Supressoras de Tumor/genética , Vasoconstrição/efeitos dos fármacos , Vasoconstritores/farmacologia
9.
Mediators Inflamm ; 2018: 7902841, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30524198

RESUMO

Hepatic inflammation is associated with the development of insulin resistance, which can perpetuate the disease state and may increase the risk of metabolic syndrome and diabetes. Despite recent advances, mechanisms linking hepatic inflammation and insulin resistance are still unclear. The low-density lipoprotein receptor-related protein 1 (LRP1) is a large endocytic and signaling receptor that is highly expressed in macrophages, adipocytes, hepatocytes, and vascular smooth muscle cells. To investigate the potential role of macrophage LRP1 in hepatic inflammation and insulin resistance, we conducted experiments using macrophage-specific LRP1-deficient mice (macLRP1-/- ) generated on a low-density lipoprotein receptor knockout (LDLR-/- ) background and fed a Western diet. LDLR-/-; macLRP1-/- mice gained less body weight and had improved glucose tolerance compared to LDLR-/- mice. Livers from LDLR-/-; macLRP1-/- mice displayed lower levels of gene expression for several inflammatory cytokines, including Ccl3, Ccl4, Ccl8, Ccr1, Ccr2, Cxcl9, and Tnf, and reduced phosphorylation of GSK3α and p38 MAPK proteins. Furthermore, LRP1-deficient peritoneal macrophages displayed altered cholesterol metabolism. Finally, circulating levels of sFRP-5, a potent anti-inflammatory adipokine that functions as a decoy receptor for Wnt5a, were elevated in LDLR-/-; macLRP1-/- mice. Surface plasmon resonance experiments revealed that sFRP-5 is a novel high affinity ligand for LRP1, revealing that LRP1 regulates levels of this inhibitor of Wnt5a-mediated signaling. Collectively, our results suggest that LRP1 expression in macrophages promotes hepatic inflammation and the development of glucose intolerance and insulin resistance by modulating Wnt signaling.


Assuntos
Inflamação/imunologia , Inflamação/metabolismo , Fígado/imunologia , Fígado/metabolismo , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Macrófagos/metabolismo , Animais , Dieta , Teste de Tolerância a Glucose , Immunoblotting , Insulina/genética , Insulina/metabolismo , Resistência à Insulina/genética , Resistência à Insulina/fisiologia , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Masculino , Camundongos , Camundongos Knockout , Triglicerídeos/sangue , Via de Sinalização Wnt/fisiologia
10.
J Biol Chem ; 291(35): 18430-9, 2016 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-27402839

RESUMO

The LDL receptor-related protein 1 (LRP1) is a large endocytic receptor that binds and mediates the endocytosis of numerous structurally diverse ligands. Currently, the basis for ligand recognition by LRP1 is not well understood. LRP1 requires a molecular chaperone, termed the receptor-associated protein (RAP), to escort the newly synthesized receptor from the endoplasmic reticulum to the Golgi. RAP is a three-domain protein that contains the following two high affinity binding sites for LRP1: one is located within domains 1 and 2, and one is located in its third domain. Studies on the interaction of the RAP third domain with LRP1 reveal critical contributions by lysine 256 and lysine 270 for this interaction. From these studies, a model for ligand recognition by this class of receptors has been proposed. Here, we employed surface plasmon resonance to investigate the binding of RAP D1D2 to LRP1. Our results reveal that the high affinity of D1D2 for LRP1 results from avidity effects mediated by the simultaneous interactions of lysine 60 in D1 and lysine 191 in D2 with sites on LRP1 to form a bivalent D1D2-LRP1 complex. When lysine 60 and 191 are both mutated to alanine, the binding of D1D2 to LRP1 is ablated. Our data also reveal that D1D2 is able to bind to a second distinct site on LRP1 to form a monovalent complex. The studies confirm the canonical model for ligand recognition by this class of receptors, which is initiated by pairs of lysine residues that dock into acidic pockets on the receptor.


Assuntos
Proteína Associada a Proteínas Relacionadas a Receptor de LDL/química , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/química , Modelos Moleculares , Complexos Multiproteicos/química , Humanos , Proteína Associada a Proteínas Relacionadas a Receptor de LDL/genética , Proteína Associada a Proteínas Relacionadas a Receptor de LDL/metabolismo , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Lisina/química , Lisina/genética , Lisina/metabolismo , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Ligação Proteica , Domínios Proteicos
11.
J Biol Chem ; 291(50): 26035-26044, 2016 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-27794518

RESUMO

Hemophilia A is a bleeding disorder caused by a deficiency in coagulation factor VIII (fVIII) that affects 1 in 5,000 males. Current prophylactic replacement therapy, although effective, is difficult to maintain due to the cost and frequency of injections. Hepatic clearance of fVIII is mediated by the LDL receptor-related protein 1 (LRP1), a member of the LDL receptor family. Although it is well established that fVIII binds LRP1, the molecular details of this interaction are unclear as most of the studies have been performed using fragments of fVIII and LRP1. In the current investigation, we examine the binding of intact fVIII to full-length LRP1 to gain insight into the molecular interaction. Chemical modification studies confirm the requirement for lysine residues in the interaction of fVIII with LRP1. Examination of the ionic strength dependence of the interaction of fVIII with LRP1 resulted in a Debye-Hückel plot with a slope of 1.8 ± 0.5, suggesting the involvement of two critical charged residues in the interaction of fVIII with LRP1. Kinetic studies utilizing surface plasmon resonance techniques reveal that the high affinity of fVIII for LRP1 results from avidity effects mediated by the interactions of two sites in fVIII with complementary sites on LRP1 to form a bivalent fVIII·LRP1 complex. Furthermore, although fVIII bound avidly to soluble forms of clusters II and IV from LRP1, only soluble cluster IV competed with the binding of fVIII to full-length LRP1, revealing that cluster IV represents the major fVIII binding site in LRP1.


Assuntos
Fator VIII/metabolismo , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Complexos Multiproteicos/metabolismo , Animais , Sítios de Ligação , Linhagem Celular , Cricetinae , Fator VIII/química , Fator VIII/genética , Humanos , Cinética , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/química , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Masculino , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Ressonância de Plasmônio de Superfície
12.
J Biol Chem ; 291(42): 22160-22172, 2016 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-27582494

RESUMO

Tissue inhibitor of metalloproteinases-3 (TIMP-3) is a central inhibitor of matrix-degrading and sheddase families of metalloproteinases. Extracellular levels of the inhibitor are regulated by the balance between its retention on the extracellular matrix and its endocytic clearance by the scavenger receptor low density lipoprotein receptor-related protein 1 (LRP1). Here, we used molecular modeling to predict TIMP-3 residues potentially involved in binding to LRP1 based on the proposed LRP1 binding motif of 2 lysine residues separated by about 21 Å and mutated the candidate lysine residues to alanine individually and in pairs. Of the 22 mutants generated, 13 displayed a reduced rate of uptake by HTB94 chondrosarcoma cells. The two mutants (TIMP-3 K26A/K45A and K42A/K110A) with lowest rates of uptake were further evaluated and found to display reduced binding to LRP1 and unaltered inhibitory activity against prototypic metalloproteinases. TIMP-3 K26A/K45A retained higher affinity for sulfated glycosaminoglycans than K42A/K110A and exhibited increased affinity for ADAMTS-5 in the presence of heparin. Both mutants inhibited metalloproteinase-mediated degradation of cartilage at lower concentrations and for longer than wild-type TIMP-3, indicating that their increased half-lives improved their ability to protect cartilage. These mutants may be useful in treating connective tissue diseases associated with increased metalloproteinase activity.


Assuntos
Neoplasias Ósseas/metabolismo , Condrossarcoma/metabolismo , Endocitose , Matriz Extracelular/metabolismo , Proteínas de Neoplasias/metabolismo , Inibidor Tecidual de Metaloproteinase-3/metabolismo , Proteína ADAMTS5/genética , Proteína ADAMTS5/metabolismo , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Cartilagem/metabolismo , Cartilagem/patologia , Linhagem Celular Tumoral , Condrossarcoma/genética , Condrossarcoma/patologia , Matriz Extracelular/genética , Matriz Extracelular/patologia , Heparina/metabolismo , Humanos , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Proteínas de Neoplasias/genética , Inibidor Tecidual de Metaloproteinase-3/genética
13.
Acta Neuropathol ; 134(4): 585-604, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28725968

RESUMO

Treatment of acute ischemic stroke with the thrombolytic tissue plasminogen activator (tPA) can significantly improve neurological outcomes; however, thrombolytic therapy is associated with an increased risk of intra-cerebral hemorrhage (ICH). Previously, we demonstrated that during stroke tPA acting on the parenchymal side of the neurovascular unit (NVU) can increase blood-brain barrier (BBB) permeability and ICH through activation of latent platelet-derived growth factor-CC (PDGF-CC) and signaling by the PDGF receptor-α (PDGFRα). However, in vitro, activation of PDGF-CC by tPA is very inefficient and the mechanism of PDGF-CC activation in the NVU is not known. Here, we show that the integrin Mac-1, expressed on brain microglia/macrophages (denoted microglia throughout), acts together with the endocytic receptor LRP1 in the NVU to promote tPA-mediated activation of PDGF-CC. Mac-1-deficient mice (Mac-1-/-) are protected from tPA-induced BBB permeability but not from permeability induced by intracerebroventricular injection of active PDGF-CC. Immunofluorescence analysis demonstrates that Mac-1, LRP1, and the PDGFRα all localize to the NVU of arterioles, and following middle cerebral artery occlusion (MCAO) Mac-1-/- mice show significantly less PDGFRα phosphorylation, BBB permeability, and infarct volume compared to wild-type mice. Bone-marrow transplantation studies indicate that resident CD11b+ cells, but not bone-marrow-derived leukocytes, mediate the early activation of PDGF-CC by tPA after MCAO. Finally, using a model of thrombotic stroke with late thrombolysis, we show that wild-type mice have an increased incidence of spontaneous ICH following thrombolysis with tPA 5 h after MCAO, whereas Mac-1-/- mice are resistant to the development of ICH even with late tPA treatment. Together, these results indicate that Mac-1 and LRP1 act as co-factors for the activation of PDGF-CC by tPA in the NVU, and suggest a novel mechanism for tightly regulating PDGFRα signaling in the NVU and controlling BBB permeability.


Assuntos
Barreira Hematoencefálica/metabolismo , Isquemia Encefálica/metabolismo , Permeabilidade Capilar/fisiologia , Linfocinas/metabolismo , Microglia/metabolismo , Fator de Crescimento Derivado de Plaquetas/metabolismo , Acidente Vascular Cerebral/metabolismo , Animais , Arteríolas/efeitos dos fármacos , Arteríolas/metabolismo , Arteríolas/patologia , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/patologia , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/patologia , Antígeno CD11b/metabolismo , Permeabilidade Capilar/efeitos dos fármacos , Células Cultivadas , Hemorragia Cerebral/induzido quimicamente , Hemorragia Cerebral/metabolismo , Hemorragia Cerebral/patologia , Modelos Animais de Doenças , Feminino , Fibrinolíticos/efeitos adversos , Fibrinolíticos/farmacologia , Leucócitos/metabolismo , Leucócitos/patologia , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Antígeno de Macrófago 1/genética , Antígeno de Macrófago 1/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/patologia , Receptores de LDL/metabolismo , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/patologia , Ativador de Plasminogênio Tecidual/efeitos adversos , Ativador de Plasminogênio Tecidual/farmacologia , Proteínas Supressoras de Tumor/metabolismo
14.
Biochemistry ; 55(8): 1204-13, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26854353

RESUMO

Itch and Nedd4 are members of the Nedd4 family of E3 ubiquitin ligases that are important in a number of biological processes. Precise regulation of their enzymatic activity is required for normal physiological function. Nedd4-like E3 ligases exist in an inactive form resulting from intramolecular interactions of their catalytic HECT domain with their WW domains. We identified the low-density-lipoprotein receptor class A domain containing 3 (LRAD3), a member of the LDL receptor family, as a potent activator of Itch and Nedd4 as evidenced by their increased auto-ubiquitination when bound to LRAD3. LRAD3 contains two PPxY motifs within its intracellular domain, both of which can bind to the WW domains on Itch and other Nedd4 family members with high affinity. Mutational analysis revealed that binding of Itch to the terminal LRAD3 PPxY motif is required to promote its auto-ubiquitination. We also determined that association of Itch and Nedd4 with LRAD3 leads to increased auto-ubiquitination and subsequent degradation through proteasome-mediated processes. Our findings reveal that LRAD3 is a component of pathways that function effectively to modulate Itch and Nedd4 auto-ubiquitination and levels. The identification of potential ligands for LRAD3 that may modulate LRAD3-induced activation of Itch and Nedd4 is likely to identify additional novel substrates and cellular functions for these important E3 ligases.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Receptores de LDL/metabolismo , Proteínas Repressoras/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Motivos de Aminoácidos , Animais , Células HEK293 , Humanos , Camundongos , Ubiquitina-Proteína Ligases Nedd4 , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Mapas de Interação de Proteínas , Proteólise , Receptores de LDL/química , Proteínas Repressoras/química , Ubiquitina-Proteína Ligases/química , Ubiquitinação
15.
J Biol Chem ; 290(28): 17262-8, 2015 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-26013822

RESUMO

The low density lipoprotein receptor-related protein 1 (LRP1) is a member of the low density lipoprotein receptor family and plays important roles in a number of physiological and pathological processes. Expression of LRP1 requires the receptor-associated protein (RAP), a molecular chaperone that binds LRP1 and other low density lipoprotein receptor family members in the endoplasmic reticulum and traffics with them to the Golgi where the acidic environment causes its dissociation. Exogenously added RAP is a potent LRP1 antagonist and binds to LRP1 on the cell surface, preventing ligands from binding. Following endocytosis, RAP dissociates in the acidic endosome, allowing LRP1 to recycle back to the cell surface. The acid-induced dissociation of RAP is mediated by its D3 domain, a relatively unstable three-helical bundle that denatures at pH <6.2 due to protonation of key histidine residues on helices 2 and 3. To develop an LRP1 inhibitor that does not dissociate at low pH, we introduced a disulfide bond between the second and third helices in the RAP D3 domain. By combining this disulfide bond with elimination of key histidine residues, we generated a stable RAP molecule that is resistant to both pH- and heat-induced denaturation. This molecule bound to LRP1 with high affinity at both neutral and acidic pH and proved to be a potent inhibitor of LRP1 function both in vitro and in vivo, suggesting that our stable RAP molecule may be useful in multiple pathological settings where LRP1 blockade has been shown to be effective.


Assuntos
Proteína Associada a Proteínas Relacionadas a Receptor de LDL/química , Proteína Associada a Proteínas Relacionadas a Receptor de LDL/farmacologia , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/antagonistas & inibidores , Receptores de LDL/antagonistas & inibidores , Proteínas Supressoras de Tumor/antagonistas & inibidores , Animais , Linhagem Celular , Humanos , Concentração de Íons de Hidrogênio , Proteína Associada a Proteínas Relacionadas a Receptor de LDL/genética , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Mutagênese Sítio-Dirigida , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/farmacologia , Ligação Proteica , Desnaturação Proteica , Engenharia de Proteínas , Estabilidade Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
16.
J Biol Chem ; 290(35): 21642-51, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26160172

RESUMO

Mac-1 exhibits a unique inhibitory activity toward IL-13-induced JAK/STAT activation and thereby regulates macrophage to foam cell transformation. However, the underlying molecular mechanism is unknown. In this study, we report the identification of IL-13Rα1, a component of the IL-13 receptor (IL-13R), as a novel ligand of integrin Mac-1, using a co-evolution-based algorithm. Biochemical analyses demonstrated that recombinant IL-13Rα1 binds Mac-1 in a purified system and supports Mac-1-mediated cell adhesion. Co-immunoprecipitation experiments revealed that endogenous Mac-1 forms a complex with IL-13Rα1 in solution, and confocal fluorescence microscopy demonstrated that these two receptors co-localize with each other on the surface of macrophages. Moreover, we found that genetic inactivation of Mac-1 promotes IL-13-induced JAK/STAT activation in macrophages, resulting in enhanced polarization along the alternative activation pathway. Importantly, we observed that Mac-1(-/-) macrophages exhibit increased expression of foam cell differentiation markers including 15-lipoxygenase and lectin-type oxidized LDL receptor-1 both in vitro and in vivo. Indeed, we found that Mac-1(-/-)LDLR(-/-) mice develop significantly more foam cells than control LDLR(-/-) mice, using an in vivo model of foam cell formation. Together, our data establish for the first time a molecular mechanism by which Mac-1 regulates the signaling activity of IL-13 in macrophages. This newly identified IL-13Rα1/Mac-1-dependent pathway may offer novel targets for therapeutic intervention in the future.


Assuntos
Subunidade alfa1 de Receptor de Interleucina-13/metabolismo , Interleucina-13/metabolismo , Antígeno de Macrófago 1/metabolismo , Macrófagos/metabolismo , Animais , Biomarcadores/metabolismo , Diferenciação Celular , Membrana Celular/metabolismo , Polaridade Celular , Evolução Molecular , Células Espumosas/citologia , Células Espumosas/metabolismo , Inativação Gênica , Janus Quinases/metabolismo , Macrófagos/citologia , Camundongos Endogâmicos C57BL , Ligação Proteica , Proteínas Recombinantes/metabolismo , Fatores de Transcrição STAT/metabolismo , Soluções
17.
Arterioscler Thromb Vasc Biol ; 35(1): 155-62, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25395615

RESUMO

OBJECTIVE: Low-density lipoprotein receptor-related protein 1 (LRP1), a multifunctional protein involved in endocytosis and cell signaling pathways, leads to several vascular pathologies when deleted in vascular smooth muscle cells (SMCs). The purpose of this study was to determine whether LRP1 deletion in SMCs influenced angiotensin II-induced arterial pathologies. APPROACH AND RESULTS: LRP1 protein abundance was equivalent in selected arterial regions, but SMC-specific LRP1 depletion had no effect on abdominal and ascending aortic diameters in young mice. To determine the effects of LRP1 deficiency on angiotensin II vascular responses, SMC-specific LRP1 (smLRP1(+/+)) and smLRP1-deficient (smLRP1(-/-)) mice were infused with saline, angiotensin II, or norepinephrine. Several smLRP(-/-) mice died of superior mesenteric arterial (SMA) rupture during angiotensin II infusion. In surviving mice, angiotensin II profoundly augmented SMA dilation in smLRP1(-/-) mice. SMA dilation was blood pressure dependent as demonstrated by a similar response during norepinephrine infusion. SMA dilation was also associated with profound macrophage accumulation, but minimal elastin fragmentation. Angiotensin II infusion led to no significant differences in abdominal aorta diameters between smLRP1(+/+) and smLRP1(-/-) mice. In contrast, ascending aortic dilation was exacerbated markedly in angiotensin II-infused smLRP1(-/-) mice, but norepinephrine had no significant effect on either aortic region. Ascending aortas of smLRP1(-/-) mice infused with angiotensin II had minimal macrophage accumulation but significantly increased elastin fragmentation and mRNA abundance of several LRP1 ligands including MMP-2 (matrix metalloproteinase-2) and uPA (urokinase plasminogen activator). CONCLUSIONS: smLRP1 deficiency had no effect on angiotensin II-induced abdominal aortic aneurysm formation. Conversely, angiotensin II infusion in smLRP1(-/-) mice exacerbated SMA and ascending aorta dilation. Dilation in these 2 regions had differential association with blood pressure and divergent pathological characteristics.


Assuntos
Aneurisma/metabolismo , Angiotensina II , Aneurisma Aórtico/metabolismo , Deleção de Genes , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Receptores de LDL/deficiência , Proteínas Supressoras de Tumor/deficiência , Aneurisma/induzido quimicamente , Aneurisma/genética , Aneurisma/patologia , Aneurisma/fisiopatologia , Animais , Aorta Abdominal/metabolismo , Aorta Abdominal/patologia , Aneurisma Aórtico/induzido quimicamente , Aneurisma Aórtico/genética , Aneurisma Aórtico/patologia , Aneurisma Aórtico/fisiopatologia , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/genética , Aneurisma da Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/patologia , Pressão Arterial , Células Cultivadas , Dilatação Patológica , Modelos Animais de Doenças , Elastina/metabolismo , Ligantes , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Macrófagos/metabolismo , Masculino , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Artéria Mesentérica Superior/metabolismo , Artéria Mesentérica Superior/patologia , Camundongos Knockout , Músculo Liso Vascular/patologia , Músculo Liso Vascular/fisiopatologia , Miócitos de Músculo Liso/patologia , Norepinefrina , RNA Mensageiro/metabolismo , Receptores de LDL/genética , Proteínas Supressoras de Tumor/genética , Ativador de Plasminogênio Tipo Uroquinase/genética , Ativador de Plasminogênio Tipo Uroquinase/metabolismo
18.
J Biol Chem ; 289(10): 6462-6474, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24474687

RESUMO

Degradation of the cartilage proteoglycan aggrecan is an early event in the development of osteoarthritis, and a disintegrin and metalloproteinase with thrombospondin motifs-4 (ADAMTS-4) and ADAMTS-5 are considered to be the major aggrecan-degrading enzymes. We have recently found that ADAMTS-5 is rapidly endocytosed via low density lipoprotein receptor-related protein 1 (LRP1) and degraded by chondrocytes. Here we report that this regulatory mechanism also applies to ADAMTS-4, although its rate of endocytosis is slower than that of ADAMTS-5. Domain deletion mutagenesis of ADAMTS-4 identified that the cysteine-rich and spacer domains are responsible for binding to LRP1, whereas the thrombospondin 1 and spacer domains are responsible in ADAMTS-5. The estimated t½ value of ADAMTS-4 endocytosis was about 220 min, whereas that of ADAMTS-5 was 100 min. The difference in half-lives between the two enzymes is explained by the 13-fold lower affinity of ADAMTS-4 for LRP1 compared with that of ADAMTS-5. Studies using soluble ligand binding clusters of LRP1 showed that ADAMTS-4 binds to clusters II and IV with similar KD,app values of 98 and 73 nm, respectively, whereas ADAMTS-5 binds to cluster II, III, and IV with KD,app values of 3.5, 41, and 9 nm, respectively. Thus, ADAMTS-5 competitively inhibits ADAMTS-4 endocytosis but not vice versa. This study highlights that the affinity between a ligand and LRP1 dictates the rate of internalization and suggests that LRP1 is a major traffic controller of the two aggrecanases, especially under inflammatory conditions, where the protein levels of ADAMTS-4 increase, but those of ADAMTS-5 do not.


Assuntos
Proteínas ADAM/metabolismo , Cartilagem Articular/metabolismo , Endocitose , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Pró-Colágeno N-Endopeptidase/metabolismo , Proteínas ADAM/química , Proteínas ADAM/genética , Proteína ADAMTS4 , Proteína ADAMTS5 , Animais , Domínio Catalítico/genética , Células Cultivadas , Meia-Vida , Humanos , Osteoartrite/metabolismo , Pró-Colágeno N-Endopeptidase/química , Pró-Colágeno N-Endopeptidase/genética , Ligação Proteica , Deleção de Sequência , Suínos
19.
Lab Invest ; 95(10): 1117-29, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26237273

RESUMO

Hepatic stellate cell (HSC) activation and trans-differentiation into myofibroblast (MFB)-like cells is key for fibrogenesis after liver injury and a potential therapeutic target. Recent studies demonstrated that low-density lipoprotein receptor-related protein 1 (LRP1)-dependent signaling by tissue-type plasminogen activator (t-PA) is a pro-fibrotic regulator of the MFB phenotype in kidney. This study investigated whether LRP1 signaling by t-PA is also relevant to HSC activation following injury. Primary and immortalized rat HSCs were treated with t-PA and assayed by western blot, MTT, and TUNEL. In vitro results were then verified using an in vivo, acute carbon tetrachloride (CCl4) injury model that examined the phenotype and recovery kinetics of MFBs from wild-type animals vs mice with a global (t-PA) or HSC-targeted (LRP1) deletion. In vitro, in contrast to kidney MFBs, exogenous, proteolytically inactive t-PA suppressed, rather than induced, activation markers in HSCs following phosphorylation of LRP1. This process was mediated by LRP1 as inhibition of t-PA binding to LRP1 blocked the effects of t-PA. In vivo, following acute injury, phosphorylation of LRP1 on activated HSCs occurred immediately prior to their disappearance. Mice lacking t-PA or LRP1 retained higher densities of activated HSCs for a longer time period compared with control mice after injury cessation. Hence, t-PA, an FDA-approved drug, contributes to the suppression of activated HSCs following injury repair via signaling through LRP1. This renders t-PA a potential target for exploitation in treating patients with fibrosis.


Assuntos
Fibrinolíticos/farmacologia , Células Estreladas do Fígado/efeitos dos fármacos , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/agonistas , Miofibroblastos/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Ativador de Plasminogênio Tecidual/farmacologia , Animais , Tetracloreto de Carbono/antagonistas & inibidores , Tetracloreto de Carbono/toxicidade , Intoxicação por Tetracloreto de Carbono/tratamento farmacológico , Intoxicação por Tetracloreto de Carbono/metabolismo , Intoxicação por Tetracloreto de Carbono/patologia , Linhagem Celular Transformada , Transdiferenciação Celular/efeitos dos fármacos , Células Cultivadas , Fibrinolíticos/metabolismo , Fibrinolíticos/uso terapêutico , Células Estreladas do Fígado/citologia , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Humanos , Ligantes , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Miofibroblastos/citologia , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Fosforilação/efeitos dos fármacos , Ratos , Ratos Endogâmicos F344 , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/uso terapêutico , Solventes/química , Solventes/toxicidade , Ativador de Plasminogênio Tecidual/genética , Ativador de Plasminogênio Tecidual/metabolismo , Ativador de Plasminogênio Tecidual/uso terapêutico
20.
Arterioscler Thromb Vasc Biol ; 34(3): 487-98, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24504736

RESUMO

Low-density lipoprotein receptor-related protein-1 (LRP1) is a large endocytic and signaling receptor that is widely expressed. In the liver, LRP1 plays an important role in regulating the plasma levels of blood coagulation factor VIII (fVIII) by mediating its uptake and subsequent degradation. fVIII is a key plasma protein that is deficient in hemophilia A and circulates in complex with von Willebrand factor. Because von Willebrand factor blocks binding of fVIII to LRP1, questions remain on the molecular mechanisms by which LRP1 removes fVIII from the circulation. LRP1 also regulates cell surface levels of tissue factor, a component of the extrinsic blood coagulation pathway. This occurs when tissue factor pathway inhibitor bridges the fVII/tissue factor complex to LRP1, resulting in rapid LRP1-mediated internalization and downregulation of coagulant activity. In the vasculature LRP1 also plays protective role from the development of aneurysms. Mice in which the lrp1 gene is selectively deleted in vascular smooth muscle cells develop a phenotype similar to the progression of aneurysm formation in human patient, revealing that these mice are ideal for investigating molecular mechanisms associated with aneurysm formation. Studies suggest that LRP1 protects against elastin fiber fragmentation by reducing excess protease activity in the vessel wall. These proteases include high-temperature requirement factor A1, matrix metalloproteinase 2, matrix metalloproteinase-9, and membrane associated type 1-matrix metalloproteinase. In addition, LRP1 regulates matrix deposition, in part, by modulating levels of connective tissue growth factor. Defining pathways modulated by LRP1 that lead to aneurysm formation and defining its role in thrombosis may allow for more effective intervention in patients.


Assuntos
Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/fisiologia , Aneurisma/prevenção & controle , Animais , Aterosclerose/metabolismo , Coagulação Sanguínea/fisiologia , Elastina/metabolismo , Endocitose/fisiologia , Matriz Extracelular/metabolismo , Fator VIII/metabolismo , Humanos , Lipoproteínas LDL/metabolismo , Fígado/metabolismo , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/química , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Modelos Animais , Modelos Moleculares , Músculo Liso Vascular/metabolismo , Especificidade de Órgãos , Peptídeo Hidrolases/metabolismo , Fator de Crescimento Derivado de Plaquetas/metabolismo , Conformação Proteica , Receptores de LDL/deficiência , Receptores de LDL/genética , Receptores de LDL/fisiologia , Transdução de Sinais , Tromboplastina/metabolismo , Fator de Crescimento Transformador beta/fisiologia , Proteínas Supressoras de Tumor/deficiência , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/fisiologia , Fator de von Willebrand/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA