Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
PLoS Pathog ; 18(2): e1010288, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35167626

RESUMO

Urogenital schistosomiasis is caused by the blood fluke Schistosoma haematobium and is one of the most neglected tropical diseases worldwide, afflicting > 100 million people. It is characterised by granulomata, fibrosis and calcification in urogenital tissues, and can lead to increased susceptibility to HIV/AIDS and squamous cell carcinoma of the bladder. To complement available treatment programs and break the transmission of disease, sound knowledge and understanding of the biology and ecology of S. haematobium is required. Hybridisation/introgression events and molecular variation among members of the S. haematobium-group might effect important biological and/or disease traits as well as the morbidity of disease and the effectiveness of control programs including mass drug administration. Here we report the first chromosome-contiguous genome for a well-defined laboratory line of this blood fluke. An exploration of this genome using transcriptomic data for all key developmental stages allowed us to refine gene models (including non-coding elements) and annotations, discover 'new' genes and transcription profiles for these stages, likely linked to development and/or pathogenesis. Molecular variation within S. haematobium among some geographical locations in Africa revealed unique genomic 'signatures' that matched species other than S. haematobium, indicating the occurrence of introgression events. The present reference genome (designated Shae.V3) and the findings from this study solidly underpin future functional genomic and molecular investigations of S. haematobium and accelerate systematic, large-scale population genomics investigations, with a focus on improved and sustained control of urogenital schistosomiasis.


Assuntos
Variação Genética , Genoma de Protozoário , Schistosoma haematobium/genética , Esquistossomose Urinária/parasitologia , Transcriptoma , Animais , Cromossomos/parasitologia , Genes de Protozoários , Genoma , Estudo de Associação Genômica Ampla , Análise de Sequência de DNA
2.
Genomics ; 113(3): 1605-1615, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33677057

RESUMO

The Chinese liver fluke, Clonorchis sinensis, causes the disease clonorchiasis, affecting ~35 million people in regions of China, Vietnam, Korea and the Russian Far East. Chronic clonorchiasis causes cholangitis and can induce a malignant cancer, called cholangiocarcinoma, in the biliary system. Control in endemic regions is challenging, and often relies largely on chemotherapy with one anthelmintic, called praziquantel. Routine treatment carries a significant risk of inducing resistance to this anthelmintic in the fluke, such that the discovery of new interventions is considered important. It is hoped that the use of molecular technologies will assist this endeavour by enabling the identification of drug or vaccine targets involved in crucial biological processes and/or pathways in the parasite. Although draft genomes of C. sinensis have been published, their assemblies are fragmented. In the present study, we tackle this genome fragmentation issue by utilising, in an integrated way, advanced (second- and third-generation) DNA sequencing and informatic approaches to build a high-quality reference genome for C. sinensis, with chromosome-level contiguity and curated gene models. This substantially-enhanced genome provides a resource that could accelerate fundamental and applied molecular investigations of C. sinensis, clonorchiasis and/or cholangiocarcinoma, and assist in the discovery of new interventions against what is a highly significant, but neglected disease-complex.


Assuntos
Clonorquíase , Clonorchis sinensis , Animais , Sequência de Bases , China , Clonorquíase/tratamento farmacológico , Clonorquíase/epidemiologia , Clonorquíase/genética , Clonorchis sinensis/genética , Clonorchis sinensis/metabolismo , Humanos , Federação Russa
3.
Mol Biol Evol ; 37(12): 3525-3549, 2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-32702104

RESUMO

Methylation is a common posttranslational modification of arginine and lysine in eukaryotic proteins. Methylproteomes are best characterized for higher eukaryotes, where they are functionally expanded and evolved complex regulation. However, this is not the case for protist species evolved from the earliest eukaryotic lineages. Here, we integrated bioinformatic, proteomic, and drug-screening data sets to comprehensively explore the methylproteome of Giardia duodenalis-a deeply branching parasitic protist. We demonstrate that Giardia and related diplomonads lack arginine-methyltransferases and have remodeled conserved RGG/RG motifs targeted by these enzymes. We also provide experimental evidence for methylarginine absence in proteomes of Giardia but readily detect methyllysine. We bioinformatically infer 11 lysine-methyltransferases in Giardia, including highly diverged Su(var)3-9, Enhancer-of-zeste and Trithorax proteins with reduced domain architectures, and novel annotations demonstrating conserved methyllysine regulation of eukaryotic elongation factor 1 alpha. Using mass spectrometry, we identify more than 200 methyllysine sites in Giardia, including in species-specific gene families involved in cytoskeletal regulation, enriched in coiled-coil features. Finally, we use known methylation inhibitors to show that methylation plays key roles in replication and cyst formation in this parasite. This study highlights reduced methylation enzymes, sites, and functions early in eukaryote evolution, including absent methylarginine networks in the Diplomonadida. These results challenge the view that arginine methylation is eukaryote conserved and demonstrate that functional compensation of methylarginine was possible preceding expansion and diversification of these key networks in higher eukaryotes.


Assuntos
Giardia/enzimologia , Proteínas Metiltransferases/metabolismo , Proteoma , Evolução Biológica , Proteínas do Citoesqueleto/metabolismo , Metilação , Trofozoítos/crescimento & desenvolvimento
4.
Int J Mol Sci ; 22(4)2021 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-33670420

RESUMO

Long non-coding, tandem-repetitive regions in mitochondrial (mt) genomes of many metazoans have been notoriously difficult to characterise accurately using conventional sequencing methods. Here, we show how the use of a third-generation (long-read) sequencing and informatic approach can overcome this problem. We employed Oxford Nanopore technology to sequence genomic DNAs from a pool of adult worms of the carcinogenic parasite, Schistosoma haematobium, and used an informatic workflow to define the complete mt non-coding region(s). Using long-read data of high coverage, we defined six dominant mt genomes of 33.4 kb to 22.6 kb. Although no variation was detected in the order or lengths of the protein-coding genes, there was marked length (18.5 kb to 7.6 kb) and structural variation in the non-coding region, raising questions about the evolution and function of what might be a control region that regulates mt transcription and/or replication. The discovery here of the largest tandem-repetitive, non-coding region (18.5 kb) in a metazoan organism also raises a question about the completeness of some of the mt genomes of animals reported to date, and stimulates further explorations using a Nanopore-informatic workflow.


Assuntos
Genoma Helmíntico , Genoma Mitocondrial , Sequenciamento por Nanoporos , Schistosoma haematobium/genética , Sequências de Repetição em Tandem , Animais
5.
Nat Commun ; 13(1): 977, 2022 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-35190553

RESUMO

Some snails act as intermediate hosts (vectors) for parasitic flatworms (flukes) that cause neglected tropical diseases, such as schistosomiases. Schistosoma haematobium is a blood fluke that causes urogenital schistosomiasis and induces bladder cancer and increased risk of HIV infection. Understanding the molecular biology of the snail and its relationship with the parasite could guide development of an intervention approach that interrupts transmission. Here, we define the genome for a key intermediate host of S. haematobium-called Bulinus truncatus-and explore protein groups inferred to play an integral role in the snail's biology and its relationship with the schistosome parasite. Bu. truncatus shared many orthologous protein groups with Biomphalaria glabrata-the key snail vector for S. mansoni which causes hepatointestinal schistosomiasis in people. Conspicuous were expansions in signalling and membrane trafficking proteins, peptidases and their inhibitors as well as gene families linked to immune response regulation, such as a large repertoire of lectin-like molecules. This work provides a sound basis for further studies of snail-parasite interactions in the search for targets to block schistosomiasis transmission.


Assuntos
Bulinus/genética , Núcleo Celular/genética , Vetores de Doenças , Esquistossomose Urinária/transmissão , Animais , Bulinus/parasitologia , Genoma , Interações Hospedeiro-Parasita/genética , Interações Hospedeiro-Parasita/imunologia , Humanos , Schistosoma haematobium/imunologia , Esquistossomose Urinária/parasitologia
6.
Artigo em Inglês | MEDLINE | ID: mdl-35284876

RESUMO

Many freshwater snails of the genus Bulinus act as intermediate hosts in the life-cycles of schistosomes in Africa and adjacent regions. Currently, 37 species of Bulinus representing four groups are recognised. The mitochondrial cytochrome c oxidase subunit 1 (cox1) gene has shown utility for identifying and differentiating Bulinus species and groups, but taxonomic relationships based on genetic data are not entirely consistent with those inferred using morphological and biological features. To underpin future systematic studies of members of the genus, we characterised here the mitochondrial genome of Bulinus truncatus (from a defined laboratory strain) using a combined second- and third-generation sequencing and informatics approach, enabling taxonomic comparisons with other planorbid snails for which mitochondrial (mt) genomes were available. Analyses showed consistency in gene order and length among mitochondrial genomes of representative planorbid snails, with the lowest and highest nucleotide diversities being in the cytochrome c oxidase and nicotinamide dehydrogenase subunit genes, respectively. This first mt genome for a representative of the genus Bulinus should provide a useful resource for future investigations of the systematics, population genetics, epidemiology and/or ecology of Bulinus and related snails. The sequencing and informatic workflow employed here should find broad applicability to a range of other snail intermediate hosts of parasitic trematodes.

7.
Artigo em Inglês | MEDLINE | ID: mdl-35284899

RESUMO

Despite advances in high-throughput sequencing and bioinformatics, molecular investigations of snail intermediate hosts that transmit parasitic trematodes are scant. Here, we report the first transcriptome for Bulinus truncatus - a key intermediate host of Schistosoma haematobium - a blood fluke that causes urogenital schistosomiasis in humans. We assembled this transcriptome from short- and long-read RNA-sequence data. From this transcriptome, we predicted 12,998 proteins, 58% of which had orthologs in Biomphalaria glabrata - an intermediate host of Schistosoma mansoni - a blood fluke that causes hepato-intestinal schistosomiasis. We predicted that select protein groups are involved in signal transduction, cell growth and death, the immune system, environmental adaptation and/or the excretory/secretory system, suggesting roles in immune responses, pathogen defence and/or parasite-host interactions. The transcriptome of Bu. truncatus provides a useful resource to underpin future molecular investigations of this and related snail species, and its interactions with pathogens including S. haematobium. The present resource should enable comparative investigations of other molluscan hosts of socioeconomically important parasites in the future.

8.
PLoS Negl Trop Dis ; 14(8): e0008552, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32845881

RESUMO

BACKGROUND: Mitochondrial genomes provide useful genetic markers for systematic and population genetic studies of parasitic helminths. Although many such genome sequences have been published and deposited in public databases, there is evidence that some of them are incomplete relating to an inability of conventional techniques to reliably sequence non-coding (repetitive) regions. In the present study, we characterise the complete mitochondrial genome-including the long, non-coding region-of the carcinogenic Chinese liver fluke, Clonorchis sinensis, using long-read sequencing. METHODS: The mitochondrial genome was sequenced from total high molecular-weight genomic DNA isolated from a pool of 100 adult worms of C. sinensis using the MinION sequencing platform (Oxford Nanopore Technologies), and assembled and annotated using an informatic approach. RESULTS: From > 93,500 long-reads, we assembled a 18,304 bp-mitochondrial genome for C. sinensis. Within this genome we identified a novel non-coding region of 4,549 bp containing six tandem-repetitive units of 719-809 bp each. Given that genomic DNA from pooled worms was used for sequencing, some variability in length/sequence in this tandem-repetitive region was detectable, reflecting population variation. CONCLUSIONS: For C. sinensis, we report the complete mitochondrial genome, which includes a long (> 4.5 kb) tandem-repetitive region. The discovery of this non-coding region using a nanopore-sequencing/informatic approach now paves the way to investigating the nature and extent of length/sequence variation in this region within and among individual worms, both within and among C. sinensis populations, and to exploring whether this region has a functional role in the regulation of replication and transcription, akin to the mitochondrial control region in mammals. Although applied to C. sinensis, the technological approach established here should be broadly applicable to characterise complex tandem-repetitive or homo-polymeric regions in the mitochondrial genomes of a wide range of taxa.


Assuntos
Clonorchis sinensis/genética , Genoma Mitocondrial , Sequências de Repetição em Tandem/genética , Animais , Sequência de Bases , DNA/isolamento & purificação
9.
Parasit Vectors ; 13(1): 38, 2020 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-31973758

RESUMO

BACKGROUND: The parasitic flatworm Clonorchis sinensis inhabits the biliary tree of humans and other piscivorous mammals. This parasite can survive and thrive in the bile duct, despite exposure to bile constituents and host immune attack. Although the precise biological mechanisms underlying this adaptation are unknown, previous work indicated that Niemann-pick type C2 (NPC2)-like sterol-binding proteins might be integral in the host-parasite interplay. Expansions of this family in some invertebrates, such as arthropods, have shown functional diversification, including novel forms of chemoreception. Thus, here we curated the NPC2-like protein gene complement in C. sinensis, and predicted their conserved and/or divergent functional roles. METHODS: We used an established comparative genomic-bioinformatic approach to curate NPC2-like proteins encoded in published genomes of Korean and Chinese isolates of C. sinensis. Protein sequence and structural homology, presence of conserved domains and phylogeny were used to group and functionally classify NPC2-like proteins. Furthermore, transcription levels of NPC2-like protein-encoding genes were explored in different developmental stages and tissues. RESULTS: Totals of 35 and 32 C. sinensis NPC2-like proteins were predicted to be encoded in the genomes of the Korean and Chinese isolates, respectively. Overall, these proteins had low sequence homology and high variability of sequence alignment coverage when compared with curated NPC2s. Most C. sinensis proteins were predicted to retain a conserved ML domain and a conserved fold conformation, with a large cavity within the protein. Only one protein sequence retained the conserved amino acid residues required in bovine NPC2 to bind cholesterol. Non-canonical C. sinensis NPC2-like protein-coding domains clustered into four distinct phylogenetic groups with members of a group frequently encoded on the same genome scaffolds. Interestingly, NPC2-like protein-encoding genes were predicted to be variably transcribed in different developmental stages and adult tissues, with most being transcribed in the metacercarial stage. CONCLUSIONS: The results of the present investigation confirms an expansion of NPC2-like proteins in C. sinensis, suggesting a diverse array of functions beyond sterol binding and transport. Functional explorations of this protein family should elucidate the mechanisms enabling the establishment and survival of C. sinensis and related flukes in the biliary systems of mammalian hosts.


Assuntos
Clonorchis sinensis/genética , Proteínas de Helminto/genética , Doença de Niemann-Pick Tipo C/genética , Animais , Sequência de Bases , Teorema de Bayes , Ductos Biliares/parasitologia , Sistema Biliar/parasitologia , China , Clonorquíase/etiologia , Clonorchis sinensis/classificação , Clonorchis sinensis/fisiologia , Biologia Computacional , Peixes/parasitologia , Parasitologia de Alimentos , Genômica , Proteínas de Helminto/química , Humanos , Coreia (Geográfico) , Metacercárias/patogenicidade , Filogenia , Estrutura Terciária de Proteína , Alinhamento de Sequência , Análise de Sequência de Proteína , Homologia de Sequência
10.
Parasit Vectors ; 13(1): 598, 2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-33246493

RESUMO

BACKGROUND: Larvae of the Australian sheep blowfly, Lucilia cuprina, parasitise sheep by feeding on skin excretions, dermal tissue and blood, causing severe damage known as flystrike or myiasis. Recent advances in -omic technologies and bioinformatic data analyses have led to a greater understanding of blowfly biology and should allow the identification of protein families involved in host-parasite interactions and disease. Current literature suggests that proteins of the SCP (Sperm-Coating Protein)/TAPS (Tpx-1/Ag5/PR-1/Sc7) (SCP/TAPS) superfamily play key roles in immune modulation, cross-talk between parasite and host as well as developmental and reproductive processes in parasites. METHODS: Here, we employed a bioinformatics workflow to curate the SCP/TAPS protein gene family in L. cuprina. Protein sequence, the presence and number of conserved CAP-domains and phylogeny were used to group identified SCP/TAPS proteins; these were compared to those found in Drosophila melanogaster to make functional predictions. In addition, transcription levels of SCP/TAPS protein-encoding genes were explored in different developmental stages. RESULTS: A total of 27 genes were identified as belonging to the SCP/TAPS gene family: encoding 26 single-domain proteins each with a single CAP domain and a solitary double-domain protein containing two conserved cysteine-rich secretory protein/antigen 5/pathogenesis related-1 (CAP) domains. Surprisingly, 16 SCP/TAPS predicted proteins formed an extended tandem array spanning a 53 kb region of one genomic region, which was confirmed by MinION long-read sequencing. RNA-seq data indicated that these 16 genes are highly transcribed in all developmental stages (excluding the embryo). CONCLUSIONS: Future work should assess the potential of selected SCP/TAPS proteins as novel targets for the control of L. cuprina and related parasitic flies of major socioeconomic importance.


Assuntos
Dípteros/genética , Proteínas de Insetos/química , Proteínas de Insetos/genética , Miíase/veterinária , Doenças dos Ovinos/parasitologia , Sequência de Aminoácidos , Animais , Austrália , Dípteros/química , Dípteros/crescimento & desenvolvimento , Dípteros/metabolismo , Feminino , Amplificação de Genes , Proteínas de Insetos/metabolismo , Masculino , Miíase/parasitologia , Filogenia , Domínios Proteicos , Alinhamento de Sequência , Ovinos
11.
J Proteomics ; 213: 103615, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-31846766

RESUMO

Protein phosphorylation plays essential roles in many cellular processes. Despite recent progress in the genomics, transcriptomics and proteomics of socioeconomically important parasitic nematodes, there is scant phosphoproteomic data to underpin molecular biological discovery. Here, using the phosphopeptide enrichment-based LC-MS/MS and data-independent acquisition (DIA) quantitation, we characterised the first developmental phosphoproteome of the parasitic nematode Haemonchus contortus - one of the most pathogenic parasites of ruminant livestock. Totally, 1804 phosphorylated proteins with 4406 phosphorylation sites ('phosphosites') from different developmental stages/sexes were identified. Bioinformatic analyses of quantified 'phosphosites' exhibited distinctive stage- and sex-specific patterns during development, and identified a subset of phosphoproteins proposed to play crucial roles in processes such as spindle positioning, signal transduction and kinase activity. A sequence-based comparison of the phosphoproteome of H. contortus with those of two free-living nematode species (Caenorhabditis elegans and Pristionchus pacificus) suggested a limited number of common protein phosphorylation events among these species. Our findings infer active roles for protein phosphorylation in the adaptation of a parasitic nematode to a constantly changing external environment. The phosphoproteomic data set for H. contortus provides a basis to better understand phosphorylation and associated biological processes (e.g., regulation of signal transduction), and might enable the discovery of novel anthelmintic targets. SIGNIFICANCE: Here, we report the first phosphoproteome for a socioeconomically parasitic nematode (Haemonchus contortus). This phosphoproteome exhibits distinctive patterns during development, suggesting active roles of post-translational modification in the parasite's adaptation to changing environments within and outside of the host animal. This work sheds a light on the developmental phosphorylation in a parasitic nematode, and could enable the discovery of novel interventions against major pathogens.


Assuntos
Haemonchus , Proteoma , Animais , Caenorhabditis elegans , Cromatografia Líquida , Feminino , Masculino , Espectrometria de Massas em Tandem
12.
PLoS Negl Trop Dis ; 14(10): e0008720, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33001992

RESUMO

The parasitic mite Sarcoptes scabiei is an economically highly significant parasite of the skin of humans and animals worldwide. In humans, this mite causes a neglected tropical disease (NTD), called scabies. This disease results in major morbidity, disability, stigma and poverty globally and is often associated with secondary bacterial infections. Currently, anti-scabies treatments are not sufficiently effective, resistance to them is emerging and no vaccine is available. Here, we report the first high-quality genome and transcriptomic data for S. scabiei. The genome is 56.6 Mb in size, has a a repeat content of 10.6% and codes for 9,174 proteins. We explored key molecules involved in development, reproduction, host-parasite interactions, immunity and disease. The enhanced 'omic data sets for S. scabiei represent comprehensive and critical resources for genetic, functional genomic, metabolomic, phylogenetic, ecological and/or epidemiological investigations, and will underpin the design and development of new treatments, vaccines and/or diagnostic tests.


Assuntos
Sarcoptes scabiei/genética , Escabiose/parasitologia , Suínos/parasitologia , Animais , Tamanho do Genoma , Interações Hospedeiro-Parasita , Espectrometria de Massas , Filogenia , Pele/imunologia , Pele/parasitologia
13.
Parasit Vectors ; 12(1): 187, 2019 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-31036054

RESUMO

BACKGROUND: Signalling pathways have been extensively investigated in the free-living nematode Caenorhabditis elegans, but very little is known about these pathways in parasitic nematodes. Here, we constructed a model for the dauer-associated signalling pathways in an economically highly significant parasitic worm, Haemonchus contortus. METHODS: Guided by data and information available for C. elegans, we used extensive genomic and transcriptomic datasets to infer gene homologues in the dauer-associated pathways, explore developmental transcriptomic, proteomic and phosphoproteomic profiles in H. contortus and study selected molecular structures. RESULTS: The canonical cyclic guanosine monophosphate (cGMP), transforming growth factor-ß (TGF-ß), insulin-like growth factor 1 (IGF-1) and steroid hormone signalling pathways of H. contortus were inferred to represent a total of 61 gene homologues. Compared with C. elegans, H. contortus has a reduced set of genes encoding insulin-like peptides, implying evolutionary and biological divergences between the parasitic and free-living nematodes. Similar transcription profiles were found for all gene homologues between the infective stage of H. contortus and dauer stage of C. elegans. High transcriptional levels for genes encoding G protein-coupled receptors (GPCRs), TGF-ß, insulin-like ligands (e.g. ins-1, ins-17 and ins-18) and transcriptional factors (e.g. daf-16) in the infective L3 stage of H. contortus were suggestive of critical functional roles in this stage. Conspicuous protein expression patterns and extensive phosphorylation of some components of these pathways suggested marked post-translational modifications also in the L3 stage. The high structural similarity in the DAF-12 ligand binding domain among nematodes indicated functional conservation in steroid (i.e. dafachronic acid) signalling linked to worm development. CONCLUSIONS: Taken together, this pathway model provides a basis to explore hypotheses regarding biological processes and regulatory mechanisms (via particular microRNAs, phosphorylation events and/or lipids) associated with the development of H. contortus and related nematodes as well as parasite-host cross talk, which could aid the discovery of new therapeutic targets.


Assuntos
Haemonchus/genética , Haemonchus/metabolismo , Transdução de Sinais , Animais , Proteínas de Caenorhabditis elegans/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Genômica , Redes e Vias Metabólicas , Modelos Moleculares , Proteômica , Fatores de Transcrição/genética , Transcriptoma
14.
Gigascience ; 8(9)2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31494670

RESUMO

BACKGROUND: Schistosoma haematobium causes urogenital schistosomiasis, a neglected tropical disease affecting >100 million people worldwide. Chronic infection with this parasitic trematode can lead to urogenital conditions including female genital schistosomiasis and bladder cancer. At the molecular level, little is known about this blood fluke and the pathogenesis of the disease that it causes. To support molecular studies of this carcinogenic worm, we reported a draft genome for S. haematobium in 2012. Although a useful resource, its utility has been somewhat limited by its fragmentation. FINDINGS: Here, we systematically enhanced the draft genome of S. haematobium using a single-molecule and long-range DNA-sequencing approach. We achieved a major improvement in the accuracy and contiguity of the genome assembly, making it superior or comparable to assemblies for other schistosome species. We transferred curated gene models to this assembly and, using enhanced gene annotation pipelines, inferred a gene set with as many or more complete gene models as those of other well-studied schistosomes. Using conserved, single-copy orthologs, we assessed the phylogenetic position of S. haematobium in relation to other parasitic flatworms for which draft genomes were available. CONCLUSIONS: We report a substantially enhanced genomic resource that represents a solid foundation for molecular research on S. haematobium and is poised to better underpin population and functional genomic investigations and to accelerate the search for new disease interventions.


Assuntos
Genoma Helmíntico , Schistosoma haematobium/genética , Animais , Anotação de Sequência Molecular , Filogenia , Análise de Sequência de DNA
15.
Parasit Vectors ; 12(1): 32, 2019 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-30642380

RESUMO

BACKGROUND: Toxocara canis is quite closely related to Ascaris suum but its biology is more complex, involving a phase of arrested development (diapause or hypobiosis) in tissues as well as transplacental and transmammary transmission routes. In the present study, we explored and compared dauer-like signalling pathways of T. canis and A. suum to infer which components in these pathways might associate with, or regulate, this added complexity in T. canis. METHODS: Guided by information for Caenorhabditis elegans, we bioinformatically inferred and compared components of dauer-like signalling pathways in T. canis and A. suum using genomic and transcriptomic data sets. In these two ascaridoids, we also explored endogenous dafachronic acids (DAs), which are known to be critical in regulating larval developmental processes in C. elegans and other nematodes, by liquid chromatography-mass spectrometry (LC-MS). RESULTS: Orthologues of C. elegans dauer signalling genes were identified in T. canis (n = 55) and A. suum (n = 51), inferring the presence of a dauer-like signalling pathway in both species. Comparisons showed clear differences between C. elegans and these ascaridoids as well as between T. canis and A. suum, particularly in the transforming growth factor-ß (TGF-ß) and insulin-like signalling pathways. Specifically, in both A. suum and T. canis, there was a paucity of genes encoding SMAD transcription factor-related protein (daf-3, daf-5, daf-8 and daf-14) and insulin/insulin-like peptide (daf-28, ins-4, ins-6 and ins-7) homologues, suggesting an evolution and adaptation of the signalling pathway in these parasites. In T. canis, there were more orthologues coding for homologues of antagonist insulin-like peptides (Tc-ins-1 and Tc-ins-18), an insulin receptor substrate (Tc-ist-1) and a serine/threonine kinase (Tc-akt-1) than in A. suum, suggesting potentiated functional roles for these molecules in regulating larval diapause and reactivation. A relatively conserved machinery was proposed for DA synthesis in the two ascaridoids, and endogenous Δ4- and Δ7-DAs were detected in them by LC-MS analysis. Differential transcription analysis between T. canis and A. suum suggests that ins-17 and ins-18 homologues are specifically involved in regulating development and migration in T. canis larvae in host tissues. CONCLUSION: The findings of this study provide a basis for functional explorations of insulin-like peptides, signalling hormones (i.e. DAs) and related nuclear receptors, proposed to link to development and/or parasite-host interactions in T. canis. Elucidating the functional roles of these molecules might contribute to the discovery of novel anthelmintic targets in ascaridoids.


Assuntos
Biologia Computacional , Mamíferos/parasitologia , Transdução de Sinais/fisiologia , Toxocara canis/fisiologia , Sequência de Aminoácidos , Animais , Ascaris suum/fisiologia , Caenorhabditis elegans , Sequência Conservada , Regulação da Expressão Gênica , Proteínas de Helminto/genética , Proteínas de Helminto/metabolismo , Interações Hospedeiro-Parasita , Modelos Biológicos , Toxocara canis/genética
16.
Biotechnol Adv ; 36(4): 915-934, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29477756

RESUMO

Protein kinases are enzymes that play essential roles in the regulation of many cellular processes. Despite expansions in the fields of genomics, transcriptomics and bioinformatics, there is limited information on the kinase complements (kinomes) of most eukaryotic organisms, including parasitic worms that cause serious diseases of humans and animals. The biological uniqueness of these worms and the draft status of their genomes pose challenges for the identification and classification of protein kinases using established tools. In this article, we provide an account of kinase biology, the roles of kinases in diseases and their importance as drug targets, and drug discovery efforts in key socioeconomically important parasitic worms. In this context, we summarise methods and resources commonly used for the curation, identification, classification and functional annotation of protein kinase sequences from draft genomes; review recent advances made in the characterisation of the worm kinomes; and discuss the implications of these advances for investigating kinase signalling and developing small-molecule inhibitors as new anti-parasitic drugs.


Assuntos
Proteínas de Helminto , Helmintíase/parasitologia , Helmintos , Proteínas Quinases , Proteoma , Animais , Biotecnologia , DNA de Helmintos , Bases de Dados de Proteínas , Helmintos/enzimologia , Helmintos/genética , Humanos
17.
Sci Rep ; 8(1): 6808, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29717207

RESUMO

Despite the substantial amount of genomic and transcriptomic data available for a wide range of eukaryotic organisms, most genomes are still in a draft state and can have inaccurate gene predictions. To gain a sound understanding of the biology of an organism, it is crucial that inferred protein sequences are accurately identified and annotated. However, this can be challenging to achieve, particularly for organisms such as parasitic worms (helminths), as most gene prediction approaches do not account for substantial phylogenetic divergence from model organisms, such as Caenorhabditis elegans and Drosophila melanogaster, whose genomes are well-curated. In this paper, we describe a bioinformatic strategy for the curation of gene families and subsequent annotation of encoded proteins. This strategy relies on pairwise gene curation between at least two closely related species using genomic and transcriptomic data sets, and is built on recent work on kinase complements of parasitic worms. Here, we discuss salient technical aspects of this strategy and its implications for the curation of protein families more generally.


Assuntos
Genoma Helmíntico , Haemonchus/genética , Proteínas de Helminto/genética , Proteínas Quinases/genética , Schistosoma/genética , Trichinella/genética , Trichuris/genética , Animais , Caenorhabditis elegans/classificação , Caenorhabditis elegans/enzimologia , Caenorhabditis elegans/genética , Biologia Computacional/métodos , Curadoria de Dados/métodos , Bases de Dados Genéticas , Feminino , Ontologia Genética , Haemonchus/classificação , Haemonchus/enzimologia , Proteínas de Helminto/classificação , Proteínas de Helminto/metabolismo , Anotação de Sequência Molecular/métodos , Filogenia , Proteínas Quinases/classificação , Proteínas Quinases/metabolismo , Schistosoma/classificação , Schistosoma/enzimologia , Transcriptoma , Trichinella/classificação , Trichinella/enzimologia , Trichuris/classificação , Trichuris/enzimologia
18.
Parasit Vectors ; 11(1): 605, 2018 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-30482220

RESUMO

BACKGROUND: Human schistosomiasis is a neglected tropical disease caused by parasitic worms of the genus Schistosoma that still affects some 200 million people. The mainstay of schistosomiasis control is a single drug, praziquantel. The reliance on this drug carries a risk of resistance emerging to this anthelmintic, such that research towards alternative anti-schistosomal drugs is warranted. In this context, a number of studies have employed computational approaches to prioritise proteins for investigation as drug targets, based on extensive genomic, transcriptomic and small-molecule data now available. METHODS: Here, we established a customisable, online application for the prioritisation of drug targets and applied it, for the first time, to the entire inferred proteome of S. haematobium. This application enables selection of weighted and ranked proteins representing potential drug targets, and integrates transcriptional data, orthology and gene essentiality information as well as drug-drug target associations and chemical properties of predicted ligands. RESULTS: Using this application, we defined 25 potential drug targets in S. haematobium that associated with approved drugs, and 3402 targets that (although they could not be linked to any compounds) are conserved among a range of socioeconomically important flatworm species and might represent targets for new trematocides. CONCLUSIONS: The online application developed here represents an interactive, customisable, expandable and reproducible drug target ranking and prioritisation approach that should be useful for the prediction of drug targets in schistosomes and other species of parasitic worms in the future. We have demonstrated the utility of this online application by predicting potential drug targets in S. haematobium that can now be evaluated using functional genomics tools and/or small molecules, to establish whether they are indeed essential for parasite survival, and to assist in the discovery of novel anti-schistosomal compounds.


Assuntos
Anti-Helmínticos/farmacologia , Biologia Computacional/métodos , Sistemas de Liberação de Medicamentos/métodos , Sistemas On-Line , Schistosoma haematobium/efeitos dos fármacos , Esquistossomose Urinária/tratamento farmacológico , Animais , Anti-Helmínticos/isolamento & purificação , Anti-Helmínticos/uso terapêutico , Sistemas de Liberação de Medicamentos/instrumentação , Genômica , Humanos , Ligantes , Anotação de Sequência Molecular , Doenças Negligenciadas/tratamento farmacológico , Praziquantel/farmacologia , Proteoma , Schistosoma haematobium/genética , Transcrição Gênica
19.
PLoS Negl Trop Dis ; 12(5): e0006535, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29813122

RESUMO

BACKGROUND: Blood flukes of the genus Schistosoma cause schistosomiasis-a neglected tropical disease (NTD) that affects more than 200 million people worldwide. Studies of schistosome genomes have improved our understanding of the molecular biology of flatworms, but most of them have focused largely on protein-coding genes. Small non-coding RNAs (sncRNAs) have been explored in selected schistosome species and are suggested to play essential roles in the post-transcriptional regulation of genes, and in modulating flatworm-host interactions. However, genome-wide small RNA data are currently lacking for key schistosomes including Schistosoma haematobium-the causative agent of urogenital schistosomiasis of humans. METHODOLOGY: MicroRNAs (miRNAs) and other sncRNAs of male and female adults of S. haematobium and small RNA transcription levels were explored by deep sequencing, genome mapping and detailed bioinformatic analyses. PRINCIPAL FINDINGS: In total, 89 transcribed miRNAs were identified in S. haematobium-a similar complement to those reported for the congeners S. mansoni and S. japonicum. Of these miRNAs, 34 were novel, with no homologs in other schistosomes. Most miRNAs (n = 64) exhibited sex-biased transcription, suggestive of roles in sexual differentiation, pairing of adult worms and reproductive processes. Of the sncRNAs that were not miRNAs, some related to the spliceosome (n = 21), biogenesis of other RNAs (n = 3) or ribozyme functions (n = 16), whereas most others (n = 3798) were novel ('orphans') with unknown functions. CONCLUSIONS: This study provides the first genome-wide sncRNA resource for S. haematobium, extending earlier studies of schistosomes. The present work should facilitate the future curation and experimental validation of sncRNA functions in schistosomes to enhance our understanding of post-transcriptional gene regulation and of the roles that sncRNAs play in schistosome reproduction, development and parasite-host cross-talk.


Assuntos
RNA Complementar/genética , Pequeno RNA não Traduzido/genética , Schistosoma haematobium/genética , Esquistossomose Urinária/parasitologia , Animais , Biologia Computacional , Cricetinae , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , RNA Complementar/metabolismo , Pequeno RNA não Traduzido/metabolismo , Schistosoma haematobium/metabolismo , Análise de Sequência de RNA
20.
Int J Parasitol ; 48(9-10): 763-772, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29792880

RESUMO

In this study, we explored the molecular alterations in the developmental switch from the L3 to the exsheathed L3 (xL3) and to the L4 stage of Haemonchus contortus in vitro using an integrated transcriptomic, proteomic and bioinformatic approach. Totals of 9,754 mRNAs, 88 microRNAs (miRNAs) and 1,591 proteins were identified, and 6,686 miRNA-mRNA pairs inferred in all larval stages studied. Approximately 16% of transcripts in the combined transcriptome (representing all three larval stages) were expressed as proteins, and there were positive correlations (r = 0.39-0.44) between mRNA transcription and protein expression in the three distinct developmental stages of the parasite. Of the predicted targets, 1,019 (27.0%) mRNA transcripts were expressed as proteins, and there was a negative correlation (r = -0.60 to -0.50) in the differential mRNA transcription and protein expression between developmental stages upon pairwise comparison. The changes in transcription (mRNA and miRNA) and protein expression from the free-living to the parasitic life cycle phase of H. contortus related to enrichments in biological pathways associated with metabolism (e.g., carbohydrate and lipid degradation, and amino acid metabolism), environmental information processing (e.g., signal transduction, signalling molecules and interactions) and/or genetic information processing (e.g., transcription and translation). Specifically, fatty acid degradation, steroid hormone biosynthesis and the Rap1 signalling pathway were suppressed, whereas transcription, translation and protein processing in the endoplasmic reticulum were upregulated during the transition from the free-living L3 to the parasitic xL3 and L4 stages of the nematode in vitro. Dominant post-transcriptional regulation was inferred to elicit these changes, and particular miRNAs (e.g., hco-miR-34 and hco-miR-252) appear to play roles in stress responses and/or environmental adaptations during developmental transitions of H. contortus. Taken together, these integrated results provide a comprehensive insight into the developmental biology of this important parasite at the molecular level in vitro. The approach applied here to H. contortus can be readily applied to other parasitic nematodes.


Assuntos
Haemonchus/crescimento & desenvolvimento , Haemonchus/metabolismo , Processamento Pós-Transcricional do RNA/fisiologia , Animais , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Helminto , Larva , MicroRNAs , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA