Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
EMBO J ; 38(18): e100849, 2019 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-31424120

RESUMO

The placenta is an autonomous organ that maintains fetal growth and development. Its multinucleated syncytiotrophoblast layer, providing fetal nourishment during gestation, exhibits characteristics of cellular senescence. We show that in human placentas from pregnancies with intrauterine growth restriction, these characteristics are decreased. To elucidate the functions of pathways regulating senescence in syncytiotrophoblast, we used dynamic contrast-enhanced MRI in mice with attenuated senescence programs. This approach revealed an altered dynamics in placentas of p53-/- , Cdkn2a-/- , and Cdkn2a-/- ;p53-/- mice, accompanied by histopathological changes in placental labyrinths. Human primary syncytiotrophoblast upregulated senescence markers and molecular pathways associated with cell-cycle inhibition and senescence-associated secretory phenotype. The pathways and components of the secretory phenotype were compromised in mouse placentas with attenuated senescence and in human placentas from pregnancies with intrauterine growth restriction. We propose that molecular mediators of senescence regulate placental structure and function, through both cell-autonomous and non-autonomous mechanisms.


Assuntos
Inibidor p16 de Quinase Dependente de Ciclina/genética , Retardo do Crescimento Fetal/genética , Redes Reguladoras de Genes , Placenta/diagnóstico por imagem , Proteína Supressora de Tumor p53/genética , Animais , Senescência Celular , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Humanos , Imageamento por Ressonância Magnética , Camundongos , Fenótipo , Placenta/metabolismo , Gravidez , Transdução de Sinais , Trofoblastos/metabolismo
3.
Elife ; 132024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38314803

RESUMO

Background: Fetal growth restriction (FGR) is a pregnancy complication in which a newborn fails to achieve its growth potential, increasing the risk of perinatal morbidity and mortality. Chronic maternal gestational hypoxia, as well as placental insufficiency are associated with increased FGR incidence; however, the molecular mechanisms underlying FGR remain unknown. Methods: Pregnant mice were subjected to acute or chronic hypoxia (12.5% O2) resulting in reduced fetal weight. Placenta oxygen transport was assessed by blood oxygenation level dependent (BOLD) contrast magnetic resonance imaging (MRI). The placentae were analyzed via immunohistochemistry and in situ hybridization. Human placentae were selected from FGR and matched controls and analyzed by immunohistochemistry (IHC). Maternal and cord sera were analyzed by mass spectrometry. Results: We show that murine acute and chronic gestational hypoxia recapitulates FGR phenotype and affects placental structure and morphology. Gestational hypoxia decreased labyrinth area, increased the incidence of red blood cells (RBCs) in the labyrinth while expanding the placental spiral arteries (SpA) diameter. Hypoxic placentae exhibited higher hemoglobin-oxygen affinity compared to the control. Placental abundance of Bisphosphoglycerate mutase (BPGM) was upregulated in the syncytiotrophoblast and spiral artery trophoblast cells (SpA TGCs) in the murine gestational hypoxia groups compared to the control. Hif1α levels were higher in the acute hypoxia group compared to the control. In contrast, human FGR placentae exhibited reduced BPGM levels in the syncytiotrophoblast layer compared to placentae from healthy uncomplicated pregnancies. Levels of 2,3 BPG, the product of BPGM, were lower in cord serum of human FGR placentae compared to control. Polar expression of BPGM was found in both human and mouse placentae syncytiotrophoblast, with higher expression facing the maternal circulation. Moreover, in the murine SpA TGCs expression of BPGM was concentrated exclusively in the apical cell side, in direct proximity to the maternal circulation. Conclusions: This study suggests a possible involvement of placental BPGM in maternal-fetal oxygen transfer, and in the pathophysiology of FGR. Funding: This work was supported by the Weizmann Krenter Foundation and the Weizmann - Ichilov (Tel Aviv Sourasky Medical Center) Collaborative Grant in Biomedical Research, by the Minerva Foundation, by the ISF KillCorona grant 3777/19.


Assuntos
Retardo do Crescimento Fetal , Placenta , Humanos , Gravidez , Feminino , Camundongos , Animais , Placenta/metabolismo , Retardo do Crescimento Fetal/genética , Retardo do Crescimento Fetal/metabolismo , Bisfosfoglicerato Mutase/genética , Bisfosfoglicerato Mutase/metabolismo , Trofoblastos/metabolismo , Hipóxia/metabolismo , Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA