Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Lipid Res ; 61(7): 972-982, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32457038

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus (SARS-CoV)-2 has resulted in the death of more than 328,000 persons worldwide in the first 5 months of 2020. Herculean efforts to rapidly design and produce vaccines and other antiviral interventions are ongoing. However, newly evolving viral mutations, the prospect of only temporary immunity, and a long path to regulatory approval pose significant challenges and call for a common, readily available, and inexpensive treatment. Strategic drug repurposing combined with rapid testing of established molecular targets could provide a pause in disease progression. SARS-CoV-2 shares extensive structural and functional conservation with SARS-CoV-1, including engagement of the same host cell receptor (angiotensin-converting enzyme 2) localized in cholesterol-rich microdomains. These lipid-enveloped viruses encounter the endosomal/lysosomal host compartment in a critical step of infection and maturation. Niemann-Pick type C (NP-C) disease is a rare monogenic neurodegenerative disease caused by deficient efflux of lipids from the late endosome/lysosome (LE/L). The NP-C disease-causing gene (NPC1) has been strongly associated with viral infection, both as a filovirus receptor (e.g., Ebola) and through LE/L lipid trafficking. This suggests that NPC1 inhibitors or NP-C disease mimetics could serve as anti-SARS-CoV-2 agents. Fortunately, there are such clinically approved molecules that elicit antiviral activity in preclinical studies, without causing NP-C disease. Inhibition of NPC1 may impair viral SARS-CoV-2 infectivity via several lipid-dependent mechanisms, which disturb the microenvironment optimum for viral infectivity. We suggest that known mechanistic information on NPC1 could be utilized to identify existing and future drugs to treat COVID-19.


Assuntos
Anticolesterolemiantes/uso terapêutico , Antivirais/uso terapêutico , Betacoronavirus/efeitos dos fármacos , Infecções por Coronavirus/tratamento farmacológico , Peptídeos e Proteínas de Sinalização Intracelular/genética , Doença de Niemann-Pick Tipo C/tratamento farmacológico , Pandemias , Pneumonia Viral/tratamento farmacológico , Androstenos/uso terapêutico , Enzima de Conversão de Angiotensina 2 , Betacoronavirus/metabolismo , Betacoronavirus/patogenicidade , COVID-19 , Colesterol/metabolismo , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/epidemiologia , Reposicionamento de Medicamentos/métodos , Humanos , Hidroxicloroquina/uso terapêutico , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Lisossomos/virologia , Proteína C1 de Niemann-Pick , Doença de Niemann-Pick Tipo C/genética , Doença de Niemann-Pick Tipo C/metabolismo , Doença de Niemann-Pick Tipo C/patologia , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/diagnóstico , Pneumonia Viral/epidemiologia , Ligação Proteica , Receptores Virais/antagonistas & inibidores , Receptores Virais/genética , Receptores Virais/metabolismo , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
2.
J Biol Chem ; 292(11): 4395-4410, 2017 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-28031458

RESUMO

Niemann-Pick type C (NP-C) disease is a fatal genetic lipidosis for which there is no Food and Drug Administration (FDA)-approved therapy. Vorinostat, an FDA-approved inhibitor of histone deacetylases, ameliorates lysosomal lipid accumulation in cultured NP-C patient fibroblasts. To assess the therapeutic potential of histone deacetylase inhibition, we pursued these in vitro observations in two murine models of NP-C disease. Npc1nmf164 mice, which express a missense mutation in the Npc1 gene, were treated intraperitoneally, from weaning, with the maximum tolerated dose of vorinostat (150 mg/kg, 5 days/week). Disease progression was measured via gene expression, liver function and pathology, serum and tissue lipid levels, body weight, and life span. Transcriptome analyses of treated livers indicated multiple changes consistent with reversal of liver dysfunction that typifies NP-C disease. Significant improvements in liver pathology and function were achieved by this treatment regimen; however, NPC1 protein maturation and levels, disease progression, weight loss, and animal morbidity were not detectably altered. Vorinostat concentrations were >200 µm in the plasma compartment of treated animals but were almost 100-fold lower in brain tissue. Apolipoprotein B metabolism and the expression of key components of lipid homeostasis in primary hepatocytes from null (Npc1-/-) and missense (Npc1nmf164 ) mutant mice were altered by vorinostat treatment, consistent with a response by these cells independent of the status of the Npc1 locus. These results suggest that HDAC inhibitors have utility to treat visceral NP-C disease. However, it is clear that improved blood-brain barrier penetration will be required to alleviate the neurological symptoms of human NP-C disease.


Assuntos
Inibidores de Histona Desacetilases/uso terapêutico , Ácidos Hidroxâmicos/uso terapêutico , Fígado/efeitos dos fármacos , Fígado/fisiopatologia , Doença de Niemann-Pick Tipo C/tratamento farmacológico , Doença de Niemann-Pick Tipo C/genética , Proteínas/genética , Animais , Apolipoproteínas B/metabolismo , Células Cultivadas , Colesterol/genética , Colesterol/metabolismo , Modelos Animais de Doenças , Inibidores de Histona Desacetilases/farmacocinética , Homeostase/efeitos dos fármacos , Humanos , Ácidos Hidroxâmicos/farmacocinética , Peptídeos e Proteínas de Sinalização Intracelular , Fígado/metabolismo , Fígado/patologia , Camundongos , Camundongos Endogâmicos C57BL , Mutação de Sentido Incorreto , Proteína C1 de Niemann-Pick , Doença de Niemann-Pick Tipo C/patologia , Doença de Niemann-Pick Tipo C/fisiopatologia , Proteínas/metabolismo , Transcriptoma/efeitos dos fármacos , Vorinostat
3.
EMBO J ; 31(21): 4106-23, 2012 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-22892566

RESUMO

Alzheimer disease (AD) is associated with aberrant processing of the amyloid precursor protein (APP) by γ-secretase, via an unknown mechanism. We recently showed that presenilin-1 and -2, the catalytic components of γ-secretase, and γ-secretase activity itself, are highly enriched in a subcompartment of the endoplasmic reticulum (ER) that is physically and biochemically connected to mitochondria, called mitochondria-associated ER membranes (MAMs). We now show that MAM function and ER-mitochondrial communication-as measured by cholesteryl ester and phospholipid synthesis, respectively-are increased significantly in presenilin-mutant cells and in fibroblasts from patients with both the familial and sporadic forms of AD. We also show that MAM is an intracellular detergent-resistant lipid raft (LR)-like domain, consistent with the known presence of presenilins and γ-secretase activity in rafts. These findings may help explain not only the aberrant APP processing but also a number of other biochemical features of AD, including altered lipid metabolism and calcium homeostasis. We propose that upregulated MAM function at the ER-mitochondrial interface, and increased cross-talk between these two organelles, may play a hitherto unrecognized role in the pathogenesis of AD.


Assuntos
Doença de Alzheimer/patologia , Embrião de Mamíferos/patologia , Fibroblastos/patologia , Microdomínios da Membrana/patologia , Mitocôndrias/patologia , Membranas Mitocondriais/patologia , Presenilina-1/fisiologia , Presenilina-2/fisiologia , Doença de Alzheimer/metabolismo , Animais , Western Blotting , Células Cultivadas , Embrião de Mamíferos/metabolismo , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/patologia , Fibroblastos/metabolismo , Humanos , Microdomínios da Membrana/metabolismo , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Presenilina-1/antagonistas & inibidores , Presenilina-2/antagonistas & inibidores , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Frações Subcelulares
4.
FASEB J ; 29(11): 4682-94, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26220175

RESUMO

A key component of eukaryotic lipid homeostasis is the esterification of sterols with fatty acids by sterol O-acyltransferases (SOATs). The esterification reactions are allosterically activated by their sterol substrates, the majority of which accumulate at the plasma membrane. We demonstrate that in yeast, sterol transport from the plasma membrane to the site of esterification is associated with the physical interaction of the major SOAT, acyl-coenzyme A:cholesterol acyltransferase (ACAT)-related enzyme (Are)2p, with 2 plasma membrane ATP-binding cassette (ABC) transporters: Aus1p and Pdr11p. Are2p, Aus1p, and Pdr11p, unlike the minor acyltransferase, Are1p, colocalize to sterol and sphingolipid-enriched, detergent-resistant microdomains (DRMs). Deletion of either ABC transporter results in Are2p relocalization to detergent-soluble membrane domains and a significant decrease (53-36%) in esterification of exogenous sterol. Similarly, in murine tissues, the SOAT1/Acat1 enzyme and activity localize to DRMs. This subcellular localization is diminished upon deletion of murine ABC transporters, such as Abcg1, which itself is DRM associated. We propose that the close proximity of sterol esterification and transport proteins to each other combined with their residence in lipid-enriched membrane microdomains facilitates rapid, high-capacity sterol transport and esterification, obviating any requirement for soluble intermediary proteins.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Microdomínios da Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Esterol O-Aciltransferase/metabolismo , Esteróis/metabolismo , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Esterificação/fisiologia , Lipoproteínas/genética , Lipoproteínas/metabolismo , Microdomínios da Membrana/genética , Camundongos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Esterol O-Aciltransferase/genética
5.
J Biol Chem ; 289(7): 4417-31, 2014 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-24273168

RESUMO

The toxic subcellular accumulation of lipids predisposes several human metabolic syndromes, including obesity, type 2 diabetes, and some forms of neurodegeneration. To identify pathways that prevent lipid-induced cell death, we performed a genome-wide fatty acid sensitivity screen in Saccharomyces cerevisiae. We identified 167 yeast mutants as sensitive to 0.5 mm palmitoleate, 45% of which define pathways that were conserved in humans. 63 lesions also impacted the status of the lipid droplet; however, this was not correlated to the degree of fatty acid sensitivity. The most liposensitive yeast strain arose due to deletion of the "ARE2 required for viability" (ARV1) gene, encoding an evolutionarily conserved, potential lipid transporter that localizes to the endoplasmic reticulum membrane. Down-regulation of mammalian ARV1 in MIN6 pancreatic ß-cells or HEK293 cells resulted in decreased neutral lipid synthesis, increased fatty acid sensitivity, and lipoapoptosis. Conversely, elevated expression of human ARV1 in HEK293 cells or mouse liver significantly increased triglyceride mass and lipid droplet number. The ARV1-induced hepatic triglyceride accumulation was accompanied by up-regulation of DGAT1, a triglyceride synthesis gene, and the fatty acid transporter, CD36. Furthermore, ARV1 was identified as a transcriptional of the protein peroxisome proliferator-activated receptor α (PPARα), a key regulator of lipid homeostasis whose transcriptional targets include DGAT1 and CD36. These results implicate ARV1 as a protective factor in lipotoxic diseases due to modulation of fatty acid metabolism. In conclusion, a lipotoxicity-based genetic screen in a model microorganism has identified 75 human genes that may play key roles in neutral lipid metabolism and disease.


Assuntos
Proteínas de Transporte/metabolismo , Ácidos Graxos/metabolismo , Metabolismo dos Lipídeos/fisiologia , Fígado/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Triglicerídeos/metabolismo , Animais , Apoptose/fisiologia , Antígenos CD36/genética , Antígenos CD36/metabolismo , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Diacilglicerol O-Aciltransferase/genética , Diacilglicerol O-Aciltransferase/metabolismo , Ácidos Graxos/genética , Estudo de Associação Genômica Ampla , Células HEK293 , Humanos , Fígado/citologia , Proteínas de Membrana/genética , Camundongos , PPAR alfa/genética , PPAR alfa/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Triglicerídeos/genética
6.
Nat Chem Biol ; 9(9): 565-72, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23831759

RESUMO

ATP-binding cassette (ABC) transporters are a ubiquitous class of integral membrane proteins of immense clinical interest because of their strong association with human disease and pharmacology. To improve our understanding of these proteins, we used membrane yeast two-hybrid technology to map the protein interactome of all of the nonmitochondrial ABC transporters in the model organism Saccharomyces cerevisiae and combined this data with previously reported yeast ABC transporter interactions in the BioGRID database to generate a comprehensive, integrated 'interactome'. We show that ABC transporters physically associate with proteins involved in an unexpectedly diverse range of functions. We specifically examine the importance of the physical interactions of ABC transporters in both the regulation of one another and in the modulation of proteins involved in zinc homeostasis. The interaction network presented here will be a powerful resource for increasing our fundamental understanding of the cellular role and regulation of ABC transporters.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Mapeamento de Interação de Proteínas , Saccharomyces cerevisiae/metabolismo , Ligação Proteica , Saccharomyces cerevisiae/química , Técnicas do Sistema de Duplo-Híbrido
7.
Annu Rev Nutr ; 33: 413-51, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23701589

RESUMO

The esterification of amphiphilic alcohols with fatty acids is a ubiquitous strategy implemented by eukaryotes and some prokaryotes to conserve energy and membrane progenitors and simultaneously detoxify fatty acids and other lipids. This key reaction is performed by at least four evolutionarily unrelated multigene families. The synthesis of this "neutral lipid" leads to the formation of a lipid droplet, which despite the clear selective advantage it confers is also a harbinger of cellular and organismal malaise. Neutral lipid deposition as a cytoplasmic lipid droplet may be thermodynamically favored but nevertheless is elaborately regulated. Optimal utilization of these resources by lipolysis is similarly multigenic in determination and regulation. We present here a perspective on these processes that originates from studies in model organisms, and we include our thoughts on interventions that target reductions in neutral lipids as therapeutics for human diseases such as obesity and diabetes.


Assuntos
Evolução Biológica , Gorduras na Dieta/metabolismo , Metabolismo dos Lipídeos , Animais , Ésteres do Colesterol/metabolismo , Diabetes Mellitus Tipo 2/etiologia , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica/efeitos adversos , Esterificação , Homeostase , Humanos , Obesidade/etiologia , Obesidade/metabolismo , Triglicerídeos/metabolismo
8.
Genetics ; 225(1)2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37440478

RESUMO

Niemann-Pick type C (NP-C) disease is a rare lysosomal storage disease caused by mutations in NPC1 (95% cases) or NPC2 (5% cases). These proteins function together in cholesterol egress from the lysosome, whereby upon mutation, cholesterol and other lipids accumulate causing major pathologies. However, it is not fully understood how cholesterol is transported from NPC1 residing at the lysosomal membrane to the endoplasmic reticulum (ER) and plasma membrane. The yeast ortholog of NPC1, Niemann-Pick type C-related protein-1 (Ncr1), functions similarly to NPC1; when transfected into a mammalian cell lacking NPC1, Ncr1 rescues the diagnostic hallmarks of cholesterol and sphingolipid accumulation. Here, we aimed to identify and characterize protein-protein interactions (PPIs) with the yeast Ncr1 protein. A genome-wide split-ubiquitin membrane yeast two-hybrid (MYTH) protein interaction screen identified 11 ER membrane-localized, full-length proteins interacting with Ncr1 at the lysosomal/vacuolar membrane. These highlight the importance of ER-vacuole membrane interface and include PPIs with the Cyb5/Cbr1 electron transfer system, the ceramide synthase complex, and the Sec61/Sbh1 protein translocation complex. These PPIs were not detected in a sterol auxotrophy condition and thus depend on normal sterol metabolism. To provide biological context for the Ncr1-Cyb5 PPI, a yeast strain lacking this PPI (via gene deletions) exhibited altered levels of sterols and sphingolipids including increased levels of glucosylceramide that mimic NP-C disease. Overall, the results herein provide new physical and genetic interaction models to further use the yeast model of NP-C disease to better understand human NP-C disease.


Assuntos
Doença de Niemann-Pick Tipo C , Saccharomyces cerevisiae , Animais , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Doença de Niemann-Pick Tipo C/tratamento farmacológico , Doença de Niemann-Pick Tipo C/genética , Doença de Niemann-Pick Tipo C/metabolismo , Receptor 1 Desencadeador da Citotoxicidade Natural/metabolismo , Proteínas/genética , Colesterol , Esteróis/metabolismo , Mamíferos
9.
J Lipid Res ; 53(9): 1800-10, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22701043

RESUMO

In animal cells, the primary repositories of esterified fatty acids and alcohols (neutral lipids) are lipid droplets that form on the lumenal and/or cytoplasmic side of the endoplasmic reticulum (ER) membrane. A monolayer of amphipathic lipids, intermeshed with key proteins, serves to solubilize neutral lipids as they are synthesized and desorbed. In specialized cells, mobilization of the lipid cargo for delivery to other tissues occurs by secretion of lipoproteins into the plasma compartment. Serum lipoprotein assembly requires an obligate structural protein anchor (apolipoprotein B) and a dedicated chaperone, microsomal triglyceride transfer protein. By contrast, lipid droplets that form on the cytoplasmic face of the ER lack an obligate protein scaffold or any required chaperone/lipid transfer protein. Mobilization of neutral lipids from the cytosol requires regulated hydrolysis followed by transfer of the products to different organelles or export from cells. Several proteins play a key role in controlling droplet number, stability, and catabolism; however, it is our premise that their formation initiates spontaneously, solely as a consequence of neutral lipid synthesis. This default pathway directs droplets into the cytoplasm where they accumulate in many lipid disorders.


Assuntos
Retículo Endoplasmático/metabolismo , Metabolismo dos Lipídeos , Animais , Humanos , Membranas Intracelulares/metabolismo , Lipoproteínas/metabolismo , Proteoma/metabolismo
10.
J Biol Chem ; 286(33): 29074-29085, 2011 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-21708942

RESUMO

The PAH1-encoded phosphatidate (PA) phosphatase in Saccharomyces cerevisiae is a pivotal enzyme that produces diacylglycerol for the synthesis of triacylglycerol (TAG) and simultaneously controls the level of PA used for phospholipid synthesis. Quantitative lipid analysis showed that the pah1Δ mutation caused a reduction in TAG mass and an elevation in the mass of phospholipids and free fatty acids, changes that were more pronounced in the stationary phase. The levels of unsaturated fatty acids in the pah1Δ mutant were unaltered, although the ratio of palmitoleic acid to oleic acid was increased with a similar change in the fatty acid composition of phospholipids. The pah1Δ mutant exhibited classic hallmarks of apoptosis in stationary phase and a marked reduction in the quantity of cytoplasmic lipid droplets. Cells lacking PA phosphatase were sensitive to exogenous fatty acids in the order of toxicity palmitoleic acid > oleic acid > palmitic acid. In contrast, the growth of wild type cells was not inhibited by fatty acid supplementation. In addition, wild type cells supplemented with palmitoleic acid exhibited an induction in PA phosphatase activity and an increase in TAG synthesis. Deletion of the DGK1-encoded diacylglycerol kinase, which counteracts PA phosphatase in controlling PA content, suppressed the defect in lipid droplet formation in the pah1Δ mutant. However, the sensitivity of the pah1Δ mutant to palmitoleic acid was not rescued by the dgk1Δ mutation. Overall, these findings indicate a key role of PA phosphatase in TAG synthesis for protection against fatty acid-induced toxicity.


Assuntos
Ácidos Graxos/metabolismo , Fosfatidato Fosfatase/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Triglicerídeos/biossíntese , Apoptose/fisiologia , Mutação , Fosfatidato Fosfatase/genética , Proteínas de Saccharomyces cerevisiae/genética , Triglicerídeos/genética
11.
J Biol Chem ; 286(14): 11951-9, 2011 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-21266578

RESUMO

The ARV1-encoded protein mediates sterol transport from the endoplasmic reticulum (ER) to the plasma membrane. Yeast ARV1 mutants accumulate multiple lipids in the ER and are sensitive to pharmacological modulators of both sterol and sphingolipid metabolism. Using fluorescent and electron microscopy, we demonstrate sterol accumulation, subcellular membrane expansion, elevated lipid droplet formation, and vacuolar fragmentation in ARV1 mutants. Motif-based regression analysis of ARV1 deletion transcription profiles indicates activation of Hac1p, an integral component of the unfolded protein response (UPR). Accordingly, we show constitutive splicing of HAC1 transcripts, induction of a UPR reporter, and elevated expression of UPR targets in ARV1 mutants. IRE1, encoding the unfolded protein sensor in the ER lumen, exhibits a lethal genetic interaction with ARV1, indicating a viability requirement for the UPR in cells lacking ARV1. Surprisingly, ARV1 mutants expressing a variant of Ire1p defective in sensing unfolded proteins are viable. Moreover, these strains also exhibit constitutive HAC1 splicing that interacts with DTT-mediated perturbation of protein folding. These data suggest that a component of UPR induction in arv1Δ strains is distinct from protein misfolding. Decreased ARV1 expression in murine macrophages also results in UPR induction, particularly up-regulation of activating transcription factor-4, CHOP (C/EBP homologous protein), and apoptosis. Cholesterol loading or inhibition of cholesterol esterification further elevated CHOP expression in ARV1 knockdown cells. Thus, loss or down-regulation of ARV1 disturbs membrane and lipid homeostasis, resulting in a disruption of ER integrity, one consequence of which is induction of the UPR.


Assuntos
Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Resposta a Proteínas não Dobradas/genética , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Animais , Apoptose , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Northern Blotting , Células Cultivadas , Colesterol/metabolismo , Biologia Computacional , Retículo Endoplasmático/metabolismo , Feminino , Immunoblotting , Macrófagos/citologia , Macrófagos/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Camundongos , Microscopia Eletrônica de Transmissão , Análise de Sequência com Séries de Oligonucleotídeos , Dobramento de Proteína , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
12.
J Biol Chem ; 286(27): 23842-51, 2011 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-21489983

RESUMO

Niemann-Pick type C (NP-C) disease is a fatal lysosomal lipid storage disorder for which no effective therapy exists. A genome-wide, conditional synthetic lethality screen was performed using the yeast model of NP-C disease during anaerobiosis, an auxotrophic condition that requires yeast to utilize exogenous sterol. We identified 12 pathways and 13 genes as modifiers of the absence of the yeast NPC1 ortholog (NCR1) and quantified the impact of loss of these genes on sterol metabolism in ncr1Δ strains grown under viable aerobic conditions. Deletion of components of the yeast NuA4 histone acetyltransferase complex in ncr1Δ strains conferred anaerobic inviability and accumulation of multiple sterol intermediates. Thus, we hypothesize an imbalance in histone acetylation in human NP-C disease. Accordingly, we show that the majority of the 11 histone deacetylase (HDAC) genes are transcriptionally up-regulated in three genetically distinct fibroblast lines derived from patients with NP-C disease. A clinically approved HDAC inhibitor (suberoylanilide hydroxamic acid) reverses the dysregulation of the majority of the HDAC genes. Consequently, three key cellular diagnostic criteria of NP-C disease are dramatically ameliorated as follows: lysosomal accumulation of both cholesterol and sphingolipids and defective esterification of LDL-derived cholesterol. These data suggest HDAC inhibition as a candidate therapy for NP-C disease. We conclude that pathways that exacerbate lethality in a model organism can be reversed in human cells as a novel therapeutic strategy. This "exacerbate-reverse" approach can potentially be utilized in any model organism for any disease.


Assuntos
Colesterol/metabolismo , Lisossomos/metabolismo , Doença de Niemann-Pick Tipo C/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Esfingolipídeos/metabolismo , Anaerobiose/efeitos dos fármacos , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/genética , Linhagem Celular , Colesterol/genética , Inibidores de Histona Desacetilases/farmacologia , Humanos , Ácidos Hidroxâmicos/farmacologia , Lisossomos/genética , Doença de Niemann-Pick Tipo C/tratamento farmacológico , Doença de Niemann-Pick Tipo C/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Esfingolipídeos/genética
13.
J Biol Chem ; 285(44): 33632-41, 2010 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-20663892

RESUMO

Endoplasmic reticulum (ER) membrane cholesterol is maintained at an optimal concentration of ∼5 mol % by the net impact of sterol synthesis, modification, and export. Arv1p was first identified in the yeast Saccharomyces cerevisiae as a key component of this homeostasis due to its probable role in intracellular sterol transport. Mammalian ARV1, which can fully complement the yeast lesion, encodes a ubiquitously expressed, resident ER protein. Repeated dosing of specific antisense oligonucleotides to ARV1 produced a marked reduction of ARV1 transcripts in liver, adipose, and to a lesser extent, intestine. This resulted in marked hypercholesterolemia, elevated serum bile acids, and activation of the hepatic farnesoid X receptor (FXR) regulatory pathway. Knockdown of ARV1 in murine liver and HepG2 cells was associated with accumulation of cholesterol in the ER at the expense of the plasma membrane and suppression of sterol regulatory element-binding proteins and their targets. These studies indicate a critical role of mammalian Arv1p in sterol movement from the ER and in the ensuing regulation of hepatic cholesterol and bile acid metabolism.


Assuntos
Ácidos e Sais Biliares/metabolismo , Proteínas de Transporte/metabolismo , Colesterol/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Animais , Células CHO , Cricetinae , Cricetulus , Humanos , Mucosa Intestinal/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Saccharomyces cerevisiae/metabolismo
14.
J Biol Chem ; 284(45): 30994-1005, 2009 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-19690167

RESUMO

Deletion of the acyltransferases responsible for triglyceride and steryl ester synthesis in Saccharomyces cerevisiae serves as a genetic model of diseases where lipid overload is a component. The yeast mutants lack detectable neutral lipids and cytoplasmic lipid droplets and are strikingly sensitive to unsaturated fatty acids. Expression of human diacylglycerol acyltransferase 2 in the yeast mutants was sufficient to reverse these phenotypes. Similar to mammalian cells, fatty acid-mediated death in yeast is apoptotic and presaged by transcriptional induction of stress-response pathways, elevated oxidative stress, and activation of the unfolded protein response. To identify pathways that protect cells from lipid excess, we performed genetic interaction and transcriptional profiling screens with the yeast acyltransferase mutants. We thus identified diacylglycerol kinase-mediated phosphatidic acid biosynthesis and production of phosphatidylcholine via methylation of phosphatidylethanolamine as modifiers of lipotoxicity. Accordingly, the combined ablation of phospholipid and triglyceride biosynthesis increased sensitivity to saturated fatty acids. Similarly, normal sphingolipid biosynthesis and vesicular transport were required for optimal growth upon denudation of triglyceride biosynthesis and also mediated resistance to exogenous fatty acids. In metazoans, many of these processes are implicated in insulin secretion thus linking lipotoxicity with early aspects of pancreatic beta-cell dysfunction, diabetes, and the metabolic syndrome.


Assuntos
Diacilglicerol O-Aciltransferase/deficiência , Ácidos Graxos/toxicidade , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/enzimologia , Esteróis/metabolismo , Morte Celular/efeitos dos fármacos , Diacilglicerol O-Aciltransferase/genética , Diacilglicerol O-Aciltransferase/metabolismo , Ácidos Graxos/metabolismo , Regulação Fúngica da Expressão Gênica , Humanos , Viabilidade Microbiana , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
15.
Am J Physiol Endocrinol Metab ; 297(1): E19-27, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19116372

RESUMO

The storage of fatty acids and fatty alcohols in the form of neutral lipids such as triacylglycerol (TAG), cholesteryl ester (CE), and wax ester (WE) serves to provide reservoirs for membrane formation and maintenance, lipoprotein trafficking, lipid detoxification, evaporation barriers, and fuel in times of stress or nutrient deprivation. This ancient process likely originated in actinomycetes and has persisted in eukaryotes, albeit by different molecular mechanisms. A surfeit of neutral lipids is strongly, perhaps causally, related to several human diseases such as diabetes mellitus, obesity, atherosclerosis and nonalcoholic fatty liver disease. Therefore, understanding the metabolic pathways of neutral lipid synthesis and the roles of the enzymes involved may facilitate the development of new therapeutic interventions for these syndromes.


Assuntos
Evolução Molecular , Metabolismo dos Lipídeos/genética , Aciltransferases/genética , Aciltransferases/metabolismo , Aciltransferases/fisiologia , Animais , Humanos , Filogenia
16.
Curr Opin Clin Nutr Metab Care ; 12(2): 110-6, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19202381

RESUMO

PURPOSE OF REVIEW: To present current perspectives on the mediators and mechanisms of cyto-lipotoxic events and their relevance to human health. RECENT FINDINGS: The relatively recent isolation of lipid acyltransferase genes from yeast to mice and humans has resulted in a paradigm shift that now establishes all fatty acids as toxic, albeit in tissue specific patterns and by different mechanisms. Furthermore, the dysregulation of glucose homeostasis in combination with excess fatty acids provides a synergistic effect leading to glucolipotoxicity and cell death. These findings are relevant to the development of disease states associated with the pathogenesis of the metabolic syndrome. SUMMARY: In an era when an astounding number of people are diagnosed with metabolic disorders, it is imperative that we understand the consequences of a chronic metabolic surplus. Excessive fat, saturated or otherwise, has to be accommodated. Multiple aspects of this homeostasis are emerging, some of which are described here.


Assuntos
Tecido Adiposo/metabolismo , Gorduras na Dieta/efeitos adversos , Ácidos Graxos/metabolismo , Hiperlipidemias/metabolismo , Metabolismo dos Lipídeos , Morte Celular/fisiologia , Glucose/metabolismo , Homeostase , Humanos , Síndrome Metabólica/metabolismo , Obesidade/metabolismo
17.
J Cell Biol ; 164(4): 547-56, 2004 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-14970192

RESUMO

Lipid movement between organelles is a critical component of eukaryotic membrane homeostasis. Niemann Pick type C (NP-C) disease is a fatal neurodegenerative disorder typified by lysosomal accumulation of cholesterol and sphingolipids. Expression of yeast NP-C-related gene 1 (NCR1), the orthologue of the human NP-C gene 1 (NPC1) defective in the disease, in Chinese hamster ovary NPC1 mutant cells suppressed lipid accumulation. Deletion of NCR1, encoding a transmembrane glycoprotein predominantly residing in the vacuole of normal yeast, gave no phenotype. However, a dominant mutation in the putative sterol-sensing domain of Ncr1p conferred temperature and polyene antibiotic sensitivity without changes in sterol metabolism. Instead, the mutant cells were resistant to inhibitors of sphingolipid biosynthesis and super sensitive to sphingosine and C2-ceramide. Moreover, plasma membrane sphingolipids accumulated and redistributed to the vacuole and other subcellular membranes of the mutant cells. We propose that the primordial function of these proteins is to recycle sphingolipids and that defects in this process in higher eukaryotes secondarily result in cholesterol accumulation.


Assuntos
Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Esfingolipídeos/metabolismo , Esteróis/metabolismo , Sequência de Aminoácidos , Animais , Transporte Biológico/fisiologia , Células CHO , Membrana Celular/metabolismo , Cricetinae , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Dados de Sequência Molecular , Proteína C1 de Niemann-Pick , Doenças de Niemann-Pick/genética , Doenças de Niemann-Pick/metabolismo , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/genética , Alinhamento de Sequência , Frações Subcelulares/química , Frações Subcelulares/metabolismo , Proteínas de Transporte Vesicular
18.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1864(8): 1109-1123, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31002946

RESUMO

Niemann-Pick type C (NP-C) disease is a rare and fatal neurodegenerative disease typified by aberrations in intracellular lipid transport. Cholesterol and other lipids accumulate in the late endosome/lysosome of all diseased cells thereby causing neuronal and visceral atrophy. A cure for NP-C remains elusive despite the extensive molecular advances emanating from the identification of the primary genetic defect in 1997. Penetration of the blood-brain barrier and efficacy in the viscera are prerequisites for effective therapy, however the rarity of NP-C disease is the major impediment to progress. Disease diagnosis is challenging and establishment of appropriate test populations for clinical trials difficult. Fortunately, disease models that span the diversity of microbial and metazoan life have been utilized to advance the quest for a therapy. The complexity of lipid storage in this disorder and in the model systems, has led to multiple theories on the primary disease mechanism and consequently numerous and varied proposed interventions. Here, we conduct an evaluation of these studies.


Assuntos
Pesquisa Biomédica , Doença de Niemann-Pick Tipo C , Animais , História do Século XX , História do Século XXI , Humanos , Modelos Biológicos , Doenças Neurodegenerativas , Doença de Niemann-Pick Tipo C/diagnóstico , Doença de Niemann-Pick Tipo C/etiologia , Doença de Niemann-Pick Tipo C/história , Doença de Niemann-Pick Tipo C/terapia , Doenças Raras
19.
Genetics ; 173(4): 1893-908, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16702413

RESUMO

UPC2 and ECM22 belong to a Zn(2)-Cys(6) family of fungal transcription factors and have been implicated in the regulation of sterol synthesis in Saccharomyces cerevisiae and Candida albicans. Previous reports suggest that double deletion of these genes in S. cerevisiae is lethal depending on the genetic background of the strain. In this investigation we demonstrate that lethality of upc2Delta ecm22Delta in the S288c genetic background is attributable to a mutation in the HAP1 transcription factor. In addition we demonstrate that strains containing upc2Delta ecm22Delta are also inviable when carrying deletions of ERG6 and ERG28 but not when carrying deletions of ERG3, ERG4, or ERG5. It has previously been demonstrated that UPC2 and ECM22 regulate S. cerevisiae ERG2 and ERG3 and that the erg2Delta upc2Delta ecm22Delta triple mutant is also synthetically lethal. We used transposon mutagenesis to isolate viable suppressors of hap1Delta, erg2Delta, erg6Delta, and erg28Delta in the upc2Delta ecm22Delta genetic background. Mutations in two genes (YND1 and GDA1) encoding apyrases were found to suppress the synthetic lethality of three of these triple mutants but not erg2Delta upc2Delta ecm22Delta. We show that deletion of YND1, like deletion of GDA1, alters the sphingolipid profiles, suggesting that changes in sphingolipids compensate for lethality produced by changes in sterol composition and abundance.


Assuntos
Deleção de Genes , Genes Fúngicos , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Esfingolipídeos/biossíntese , Esteróis/biossíntese , Candida albicans/genética , Candida albicans/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Esfingolipídeos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA