Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(37): 86618-86631, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37421529

RESUMO

As an unconventional natural gas, the calorific value of coal seam gas (CSG) is equivalent to that of natural gas. It is a high-quality, clean, and efficient green low-carbon energy source. Coal seam hydraulic fracturing is an important permeability enhancement measure in the process of CSG drainage. In order to further understand the overall research progress in the field of coal seam hydraulic fracturing, the Web of Science (WOS) database is used as a sample source, and the bibliometric analysis of the literature is carried out by CiteSpace software. The visual knowledge maps of the number of publications, the research countries, institutions, and keyword clustering are drawn. The research shows that it has gone through two stages of slow development and rapid growth in terms of time distribution. In terms of cooperation networks, the main active countries include China, the USA, Australia, Russia, and Canada, composed of China University of Mining and Technology, Chongqing University, Henan Polytechnic University, and China University of Petroleum as the core research institutions. Taking keywords as the theme, the coal seam hydraulic fracturing research field mainly involves high-frequency keywords such as hydraulic fracturing, permeability, model, and numerical simulation. The hotspot evolution law and frontier development trend of keywords with time are analyzed and obtained. On this basis, from a new perspective, the "scientific research landscape map" in the field of coal seam hydraulic fracturing is outlined, in order to provide a scientific reference for the research in this field.


Assuntos
Fraturamento Hidráulico , Gás Natural , Humanos , Carvão Mineral/análise , Austrália , Bibliometria
2.
Artigo em Inglês | MEDLINE | ID: mdl-36554371

RESUMO

The domino event caused by fire is one of the common accidents in hydrocarbon storage tank farms, which further expands the severity and scope of the accident. Due to the different failure sequence of the storage tanks in a domino accident, the radiant heat generated by the failed storage tank to the target tank is different. Based on the influence of this synergistic effect, this study combined the Monte Carlo algorithm and FSEM, and proposed a fast real-time probability calculation method for a fire domino accident in a storage tank area, for the first time. This method uses the Monte Carlo algorithm to simulate all accident scenarios, and obtains the evolution of multiple escalation fire domino accidents under the synergistic effect according to FSEM, and then calculates the real-time failure probability and risk. Based on a comprehensive analysis of the accident propagation path, this method avoids the problem of a large amount of calculation, and is conducive to the rapid and effective analysis of the fire risk in a storage tank area and the formulation of corresponding risk reduction measures. The effectiveness and superiority of the proposed method were proved by a case study.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA