Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Theor Appl Genet ; 130(11): 2375-2393, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28831522

RESUMO

KEY MESSAGE: A novel genetic linkage map was constructed using SSR markers and stable QTLs were identified for six drought tolerance related-traits using single-environment analysis under irrigation and drought treatments. Mungbean (Vigna radiata L.) is one of the most important leguminous food crops. However, mungbean production is seriously constrained by drought. Isolation of drought-responsive genetic elements and marker-assisted selection breeding will benefit from the detection of quantitative trait locus (QTLs) for traits related to drought tolerance. In this study, we developed a full-coverage genetic linkage map based on simple sequence repeat (SSR) markers using a recombinant inbred line (RIL) population derived from an intra-specific cross between two drought-resistant varieties. This novel map was anchored with 313 markers. The total map length was 1010.18 cM across 11 linkage groups, covering the entire genome of mungbean with a saturation of one marker every 3.23 cM. We subsequently detected 58 QTLs for plant height (PH), maximum leaf area (MLA), biomass (BM), relative water content, days to first flowering, and seed yield (Yield) and 5 for the drought tolerance index of 3 traits in irrigated and drought environments at 2 locations. Thirty-eight of these QTLs were consistently detected two or more times at similar linkage positions. Notably, qPH5A and qMLA2A were consistently identified in marker intervals from GMES5773 to MUS128 in LG05 and from Mchr11-34 to the HAAS_VR_1812 region in LG02 in four environments, contributing 6.40-20.06% and 6.97-7.94% of the observed phenotypic variation, respectively. None of these QTLs shared loci with previously identified drought-related loci from mungbean. The results of these analyses might facilitate the isolation of drought-related genes and help to clarify the mechanism of drought tolerance in mungbean.


Assuntos
Mapeamento Cromossômico , Secas , Ligação Genética , Locos de Características Quantitativas , Vigna/genética , Meio Ambiente , Marcadores Genéticos , Repetições de Microssatélites , Fenótipo , Folhas de Planta/crescimento & desenvolvimento , Sementes/crescimento & desenvolvimento , Vigna/fisiologia
2.
Plant Commun ; 3(6): 100352, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-35752938

RESUMO

Mung bean is an economically important legume crop species that is used as a food, consumed as a vegetable, and used as an ingredient and even as a medicine. To explore the genomic diversity of mung bean, we assembled a high-quality reference genome (Vrad_JL7) that was ∼479.35 Mb in size, with a contig N50 length of 10.34 Mb. A total of 40,125 protein-coding genes were annotated, representing ∼96.9% of the genetic region. We also sequenced 217 accessions, mainly landraces and cultivars from China, and identified 2,229,343 high-quality single-nucleotide polymorphisms (SNPs). Population structure revealed that the Chinese accessions diverged into two groups and were distinct from non-Chinese lines. Genetic diversity analysis based on genomic data from 750 accessions in 23 countries supported the hypothesis that mung bean was first domesticated in south Asia and introduced to east Asia probably through the Silk Road. We constructed the first pan-genome of mung bean germplasm and assembled 287.73 Mb of non-reference sequences. Among the genes, 83.1% were core genes and 16.9% were variable. Presence/absence variation (PAV) events of nine genes involved in the regulation of the photoperiodic flowering pathway were identified as being under selection during the adaptation process to promote early flowering in the spring. Genome-wide association studies (GWASs) revealed 2,912 SNPs and 259 gene PAV events associated with 33 agronomic traits, including a SNP in the coding region of the SWEET10 homolog (jg24043) involved in crude starch content and a PAV event in a large fragment containing 11 genes for color-related traits. This high-quality reference genome and pan-genome will provide insights into mung bean breeding.


Assuntos
Fabaceae , Vigna , Vigna/genética , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Fabaceae/genética , Polimorfismo de Nucleotídeo Único
3.
J Genet ; 95(3): 527-35, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27659323

RESUMO

Mungbean (Vigna radiata L. Wilczek) is one of the most important leguminous food crops in Asia. We employed Illumina paired-end sequencing to analyse transcriptomes of three different mungbean genotypes. A total of 38.3-39.8 million pairedend reads with 73 bp lengths were generated. The pooled reads from the three libraries were assembled into 56,471 transcripts. Following a cluster analysis, 43,293 unigenes were obtained with an average length of 739 bp and N50 length of 1176 bp. Of the unigenes, 34,903 (80.6%) had significant similarity to known proteins in the NCBI nonredundant protein database (Nr), while 21,450 (58.4%) had BLAST hits in the Swiss-Prot database (E-value<10⁻5). Further, 1245 differential expression genes were detected among three mungbean genotypes. In addition, we identified 3788 expressed sequence tag-simple sequence repeat (EST-SSR) motifs that could be used as potential molecular markers. Among 320 tested loci, 310 (96.5%) yielded amplification products, and 151 (47.0%) exhibited polymorphisms among six mungbean accessions. These transcriptome data and mungbean EST-SSRs could serve as a valuable resource for novel gene discovery and the marker-assisted selective breeding of this species.


Assuntos
Etiquetas de Sequências Expressas , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Repetições de Microssatélites , Transcriptoma , Vigna/genética , Sequência de Aminoácidos , Bases de Dados de Proteínas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Marcadores Genéticos , Genótipo , Anotação de Sequência Molecular , Motivos de Nucleotídeos , Melhoramento Vegetal , Polimorfismo Genético , Alinhamento de Sequência , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos
4.
Sci Rep ; 6: 39523, 2016 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-28008173

RESUMO

A high-density linkage map is crucial for the identification of quantitative trait loci (QTLs), positional cloning, and physical map assembly. Here, we report the development of a high-density linkage map based on specific length amplified fragment sequencing (SLAF-seq) for adzuki bean and the identification of flowering time-related QTLs. Through SLAF library construction and Illumina sequencing of a recombinant inbred line (RIL) population, a total of 4425 SLAF markers were developed and assigned to 11 linkage groups (LGs). After binning the SLAF markers that represented the same genotype, the final linkage map of 1628.15 cM contained 2032 markers, with an average marker density of 0.80 cM. Comparative analysis showed high collinearity with two adzuki bean physical maps and a high degree of synteny with the reference genome of common bean (Phaseolus vulgaris). Using this map, one major QTL on LG03 and two minor QTLs on LG05 associated with first flowering time (FLD) were consistently identified in tests over a two-year period. These results provide a foundation that will be useful for future genomic research, such as identifying QTLs for other important traits, positional cloning, and comparative mapping in legumes.


Assuntos
Mapeamento Cromossômico/métodos , Flores/fisiologia , Ligação Genética , Locos de Características Quantitativas , Vigna/genética , Biblioteca Gênica , Genes de Plantas , Marcadores Genéticos , Genoma de Planta , Genótipo , Phaseolus/genética , Fenótipo , Análise de Sequência de DNA , Sintenia , Vigna/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA