Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
ACS Biomater Sci Eng ; 10(7): 4374-4387, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38869358

RESUMO

DNA vaccines represent an innovative approach for the immunization of diverse diseases. However, their clinical trial outcomes are constrained by suboptimal transfection efficiency and immunogenicity. In this work, we present a universal methodology involving the codelivery of Toll-like receptor 7/8 agonists (TLR7/8a) and antigen gene using TLR7/8a-conjugated peptide-coated poly(ß-amino ester) (PBAE) nanoparticles (NPs) to augment delivery efficiency and immune response. Peptide-TLR7/8a-coated PBAE NPs exhibit advantageous biophysical attributes, encompassing diminutive particle dimensions, nearly neutral ζ potential, and stability in the physiological environment. This synergistic approach not only ameliorates the stability of plasmid DNA (pDNA) and gene delivery efficacy but also facilitates subsequent antigen production. Furthermore, under optimal formulation conditions, the TLR7/8a-conjugated peptide coated PBAE NPs exhibit a potent capacity to induce robust immune responses. Collectively, this nanoparticulate gene delivery system demonstrates heightened transfection efficacy, stability, biodegradability, immunostimulatory effect, and low toxicity, making it a promising platform for the clinical advancement of DNA vaccines.


Assuntos
Nanopartículas , Peptídeos , Receptor 7 Toll-Like , Receptor 8 Toll-Like , Vacinas de DNA , Vacinas de DNA/imunologia , Vacinas de DNA/administração & dosagem , Receptor 8 Toll-Like/imunologia , Receptor 8 Toll-Like/agonistas , Receptor 7 Toll-Like/agonistas , Receptor 7 Toll-Like/imunologia , Animais , Nanopartículas/química , Peptídeos/química , Peptídeos/imunologia , Humanos , Camundongos , Feminino , Polímeros/química , Plasmídeos/genética , Plasmídeos/imunologia , Camundongos Endogâmicos C57BL
2.
Nat Commun ; 15(1): 1638, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38388538

RESUMO

Gut bacteriome dysbiosis is known to be implicated in the pathogenesis of inflammatory bowel disease (IBD). Crohn's disease (CD) is an IBD subtype with extensive mucosal inflammation, yet the mucosal virome, an empirical modulator of the bacteriome and mucosal immunity, remains largely unclear regarding its composition and role. Here, we exploited trans-cohort CD patients and healthy individuals to compositionally and functionally investigate the small bowel (terminal ileum) virome and bacteriome. The CD ileal virome was characterised by an under-representation of both lytic and temperate bacteriophages (especially those targeting bacterial pathogens), particularly in patients with flare-up. Meanwhile, the virome-bacteriome ecology in CD ileal mucosa was featured by a lack of Bifidobacterium- and Lachnospiraceae-led mutualistic interactions between bacteria and bacteriophages; surprisingly it was more pronounced in CD remission than flare-up, underlining the refractory and recurrent nature of mucosal inflammation in CD. Lastly, we substantiated that ileal virions from CD patients causally exacerbated intestinal inflammation in IBD mouse models, by reshaping a gut virome-bacteriome ecology preceding intestinal inflammation (microbial trigger) and augmenting microbial sensing/defence pathways in the intestine cells (host response). Altogether, our results highlight the significance of mucosal virome in CD pathogenesis and importance of mucosal virome restoration in CD therapeutics.


Assuntos
Bacteriófagos , Doença de Crohn , Doenças Inflamatórias Intestinais , Humanos , Animais , Camundongos , Doença de Crohn/patologia , Viroma , Doenças Inflamatórias Intestinais/patologia , Mucosa Intestinal/metabolismo , Íleo/patologia , Bactérias , Inflamação/patologia
3.
ACS Nano ; 18(28): 18282-18298, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38953884

RESUMO

The therapeutic efficacy of oncolytic adenoviruses (OAs) relies on efficient viral transduction and replication. However, the limited expression of coxsackie-adenovirus receptors in many tumors, along with the intracellular antiviral signaling, poses significant obstacles to OA infection and oncolysis. Here, we present sonosensitizer-armed OAs (saOAs) that potentiate the antitumor efficacy of oncolytic virotherapy through sonodynamic therapy-augmented virus replication. The saOAs could not only efficiently infect tumor cells via transferrin receptor-mediated endocytosis but also exhibit enhanced viral replication and tumor oncolysis under ultrasound irradiation. We revealed that the sonosensitizer loaded on the viruses induced the generation of ROS within tumor cells, which triggered JNK-mediated autophagy, ultimately leading to the enhanced viral replication. In mouse models of malignant melanoma, the combination of saOAs and sonodynamic therapy elicited a robust antitumor immune response, resulting in significant inhibition of melanoma growth and improved host survival. This work highlights the potential of sonodynamic therapy in enhancing the effectiveness of OAs and provides a promising platform for fully exploiting the antitumor efficacy of oncolytic virotherapy.


Assuntos
Adenoviridae , Terapia Viral Oncolítica , Vírus Oncolíticos , Replicação Viral , Animais , Terapia Viral Oncolítica/métodos , Adenoviridae/genética , Adenoviridae/fisiologia , Vírus Oncolíticos/fisiologia , Vírus Oncolíticos/genética , Replicação Viral/efeitos da radiação , Camundongos , Humanos , Linhagem Celular Tumoral , Terapia por Ultrassom/métodos , Melanoma/terapia , Melanoma/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA