Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 182
Filtrar
1.
Nature ; 603(7899): 68-72, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35236976

RESUMO

The spatial resolutions of even the most sensitive isotope analysis techniques based on light or ion probes are limited to a few hundred nanometres. Although vibrational spectroscopy using electron probes has achieved higher spatial resolution1-3, the detection of isotopes at the atomic level4 has been challenging so far. Here we show the unambiguous isotopic imaging of 12C carbon atoms embedded in 13C graphene and the monitoring of their self-diffusion via atomic-level vibrational spectroscopy. We first grow a domain of 12C carbon atoms in a pre-existing crack of 13C graphene, which is then annealed at 600 degrees Celsius for several hours. Using scanning transmission electron microscopy-electron energy loss spectroscopy, we obtain an isotope map that confirms the segregation of 12C atoms that diffused rapidly. The map also indicates that the graphene layer becomes isotopically homogeneous over 100-nanometre regions after 2 hours. Our results demonstrate the high mobility of carbon atoms during growth and annealing via self-diffusion. This imaging technique can provide a fundamental methodology for nanoisotope engineering and monitoring, which will aid in the creation of isotope labels and tracing at the nanoscale.

2.
Nature ; 609(7925): 46-51, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36045238

RESUMO

Superlattices-a periodic stacking of two-dimensional layers of two or more materials-provide a versatile scheme for engineering materials with tailored properties1,2. Here we report an intrinsic heterodimensional superlattice consisting of alternating layers of two-dimensional vanadium disulfide (VS2) and a one-dimensional vanadium sulfide (VS) chain array, deposited directly by chemical vapour deposition. This unique superlattice features an unconventional 1T stacking with a monoclinic unit cell of VS2/VS layers identified by scanning transmission electron microscopy. An unexpected Hall effect, persisting up to 380 kelvin, is observed when the magnetic field is in-plane, a condition under which the Hall effect usually vanishes. The observation of this effect is supported by theoretical calculations, and can be attributed to an unconventional anomalous Hall effect owing to an out-of-plane Berry curvature induced by an in-plane magnetic field, which is related to the one-dimensional VS chain. Our work expands the conventional understanding of superlattices and will stimulate the synthesis of more extraordinary superstructures.

3.
Nature ; 577(7789): 199-203, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31915396

RESUMO

Bulk amorphous materials have been studied extensively and are widely used, yet their atomic arrangement remains an open issue. Although they are generally believed to be Zachariasen continuous random networks1, recent experimental evidence favours the competing crystallite model in the case of amorphous silicon2-4. In two-dimensional materials, however,  the corresponding questions remain unanswered. Here we report the synthesis, by laser-assisted chemical vapour deposition5, of centimetre-scale, free-standing, continuous and stable monolayer amorphous carbon, topologically distinct from disordered graphene. Unlike in bulk materials, the structure of monolayer amorphous carbon can be determined by atomic-resolution imaging. Extensive characterization by Raman and X-ray spectroscopy and transmission electron microscopy reveals the complete absence of long-range periodicity and a threefold-coordinated structure with a wide distribution of bond lengths, bond angles, and five-, six-, seven- and eight-member rings. The ring distribution is not a Zachariasen continuous random network, but resembles the competing (nano)crystallite model6. We construct a corresponding model that enables density-functional-theory calculations of the properties of monolayer amorphous carbon, in accordance with observations. Direct measurements confirm that it is insulating, with resistivity values similar to those of boron nitride grown by chemical vapour deposition. Free-standing monolayer amorphous carbon is surprisingly stable and deforms to a high breaking strength, without crack propagation from the point of fracture. The excellent physical properties of this stable, free-standing monolayer amorphous carbon could prove useful for permeation and diffusion barriers in applications such as magnetic recording devices and flexible electronics.

4.
Nature ; 573(7773): 247-250, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31406319

RESUMO

Propagating atomic vibrational waves-phonons-determine important thermal, mechanical, optoelectronic and transport characteristics of materials. Thus a knowledge of phonon dispersion (that is, the dependence of vibrational energy on momentum) is a key part of our understanding and optimization of a material's behaviour. However, the phonon dispersion of a free-standing monolayer of a two-dimensional material such as graphene, and its local variations, have remained elusive for the past decade because of the experimental limitations of vibrational spectroscopy. Even though electron energy loss spectroscopy (EELS) in transmission has recently been shown to probe local vibrational charge responses1-4, such studies are still limited by momentum space integration due to the focused beam geometry; they are also restricted to polar materials such as boron nitride or oxides1-4, in which huge signals induced by strong dipole moments are present. On the other hand, measurements on graphene performed by inelastic X-ray (neutron) scattering spectroscopy5-7 or EELS in reflection8,9 do not have any spatial resolution and require large microcrystals. Here we provide a new pathway to determine phonon dispersions down to the scale of an individual free-standing graphene monolayer by mapping the distinct vibrational modes for a large momentum transfer. The measured scattering intensities are accurately reproduced and interpreted with density functional perturbation theory10. Additionally, a nanometre-scale mapping of selected momentum-resolved vibrational modes using graphene nanoribbon structures has enabled us to spatially disentangle bulk, edge and surface vibrations. Our results are a proof-of-principle demonstration of the feasibility of studying local vibrational modes in two-dimensional monolayer materials at the nanometre scale.

5.
Small ; 20(16): e2308571, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38032162

RESUMO

Thermal conductivity measurements are conducted by optothermal Raman technique before and after the introduction of an axial tensile strain in a suspended single-walled carbon nanotube (SWCNT) through end-anchoring by boron nitride nanotubes (BNNTs). Surprisingly, the axial tensile strain (<0.4 %) in SWCNT results in a considerable enhancement of its thermal conductivity, and the larger the strain, the higher the enhancement. Furthermore, the thermal conductivity reduction with temperature is much alleviated for the strained nanotube compared to previously reported unstrained cases. The thermal conductivity of SWCNT increases with its length is also observed.

6.
Nat Mater ; 22(4): 450-458, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35739274

RESUMO

Two-dimensional (2D) materials with multiphase, multielement crystals such as transition metal chalcogenides (TMCs) (based on V, Cr, Mn, Fe, Cd, Pt and Pd) and transition metal phosphorous chalcogenides (TMPCs) offer a unique platform to explore novel physical phenomena. However, the synthesis of a single-phase/single-composition crystal of these 2D materials via chemical vapour deposition is still challenging. Here we unravel a competitive-chemical-reaction-based growth mechanism to manipulate the nucleation and growth rate. Based on the growth mechanism, 67 types of TMCs and TMPCs with a defined phase, controllable structure and tunable component can be realized. The ferromagnetism and superconductivity in FeXy can be tuned by the y value, such as superconductivity observed in FeX and ferromagnetism in FeS2 monolayers, demonstrating the high quality of as-grown 2D materials. This work paves the way for the multidisciplinary exploration of 2D TMPCs and TMCs with unique properties.

7.
Nature ; 556(7701): 355-359, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29670263

RESUMO

Investigations of two-dimensional transition-metal chalcogenides (TMCs) have recently revealed interesting physical phenomena, including the quantum spin Hall effect1,2, valley polarization3,4 and two-dimensional superconductivity 5 , suggesting potential applications for functional devices6-10. However, of the numerous compounds available, only a handful, such as Mo- and W-based TMCs, have been synthesized, typically via sulfurization11-15, selenization16,17 and tellurization 18 of metals and metal compounds. Many TMCs are difficult to produce because of the high melting points of their metal and metal oxide precursors. Molten-salt-assisted methods have been used to produce ceramic powders at relatively low temperature 19 and this approach 20 was recently employed to facilitate the growth of monolayer WS2 and WSe2. Here we demonstrate that molten-salt-assisted chemical vapour deposition can be broadly applied for the synthesis of a wide variety of two-dimensional (atomically thin) TMCs. We synthesized 47 compounds, including 32 binary compounds (based on the transition metals Ti, Zr, Hf, V, Nb, Ta, Mo, W, Re, Pt, Pd and Fe), 13 alloys (including 11 ternary, one quaternary and one quinary), and two heterostructured compounds. We elaborate how the salt decreases the melting point of the reactants and facilitates the formation of intermediate products, increasing the overall reaction rate. Most of the synthesized materials in our library are useful, as supported by evidence of superconductivity in our monolayer NbSe2 and MoTe2 samples21,22 and of high mobilities in MoS2 and ReS2. Although the quality of some of the materials still requires development, our work opens up opportunities for studying the properties and potential application of a wide variety of two-dimensional TMCs.

8.
Proc Natl Acad Sci U S A ; 118(37)2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34508003

RESUMO

We recently synthesized one-dimensional (1D) van der Waals heterostructures in which different atomic layers (e.g., boron nitride or molybdenum disulfide) seamlessly wrap around a single-walled carbon nanotube (SWCNT) and form a coaxial, crystalized heteronanotube. The growth process of 1D heterostructure is unconventional-different crystals need to nucleate on a highly curved surface and extend nanotubes shell by shell-so understanding the formation mechanism is of fundamental research interest. In this work, we perform a follow-up and comprehensive study on the structural details and formation mechanism of chemical vapor deposition (CVD)-synthesized 1D heterostructures. Edge structures, nucleation sites, and crystal epitaxial relationships are clearly revealed using transmission electron microscopy (TEM). This is achieved by the direct synthesis of heteronanotubes on a CVD-compatible Si/SiO2 TEM grid, which enabled a transfer-free and nondestructive access to many intrinsic structural details. In particular, we have distinguished different-shaped boron nitride nanotube (BNNT) edges, which are confirmed by electron diffraction at the same location to be strictly associated with its own chiral angle and polarity. We also demonstrate the importance of surface cleanness and isolation for the formation of perfect 1D heterostructures. Furthermore, we elucidate the handedness correlation between the SWCNT template and BNNT crystals. This work not only provides an in-depth understanding of this 1D heterostructure material group but also, in a more general perspective, serves as an interesting investigation on crystal growth on highly curved (radius of a couple of nanometers) atomic substrates.

9.
Nano Lett ; 23(24): 11835-11841, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38088831

RESUMO

In this work, we perform electron energy-loss spectroscopy (EELS) of freestanding graphene with high energy and momentum resolution to disentangle the quasielastic scattering from the excitation gap of Dirac electrons close to the optical limit. We show the importance of many-body effects on electronic excitations at finite transferred momentum by comparing measured EELS to ab initio calculations at increasing levels of theory. Quasi-particle corrections and excitonic effects are addressed within the GW approximation and the Bethe-Salpeter equation, respectively. Both effects are essential in the description of the EEL spectra to obtain a quantitative agreement with experiments, with the position, dispersion, and shape of both the excitation gap and the π plasmon being significantly affected by excitonic effects.

11.
Small ; 18(37): e2203032, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35980982

RESUMO

The oxygen reduction reaction (ORR) 2e- pathway provides an alternative and green route for industrial hydrogen peroxide (H2 O2 ) production. Herein, the ORR photo/electrocatalytic activity in the alkaline electrolyte of manganese and iron porphyrin (MnP and FeP, respectively) electrostatically associated with modified 1T/2H MoS2 nanosheets is reported. The best performing catalyst, MnP/MoS2 , exhibits excellent electrocatalytic performance towards selective H2 O2 formation, with a low overpotential of 20 mV for the 2e- ORR pathway (Eons  = 680 mV vs RHE) and an H2 O2 yield up to 99%. Upon visible light irradiation, MnP/MoS2 catalyst shows significant activity enhancement along with good stability. Electrochemical impedance spectroscopy assays suggest a reduced charge transfer resistance value at the interface with the electrolyte, indicating an efficient intra-ensemble transfer process of the photo-excited electrons through the formation of a type II heterojunction or Schottky contact, and therefore justifies the boosted electrochemical activities in the presence of light. Overall, this work is expected to inspire the design of novel advanced photo/electrocatalysts, paving the way for sustainable industrial H2 O2 production.


Assuntos
Molibdênio , Porfirinas , Dissulfetos , Peróxido de Hidrogênio , Ferro , Manganês , Molibdênio/química , Peróxidos , Sulfetos
12.
Nano Lett ; 21(24): 10386-10391, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34881904

RESUMO

We studied the interlayer coupling and decoupling of bilayer graphene (BLG) using spatially resolved electron energy loss spectroscopy with a monochromated electron source. We correlated the twist-angle-dependent energy band hybridization with Moiré superlattices and the corresponding optical absorption peaks. The optical absorption peak originates from the excitonic transition between the hybridized van Hove singularities (vHSs), which shifts systematically with the twist angle. We then proved that the BLG decouples when a monolayer of metal chloride is intercalated in its van der Waals gap and results in the elimination of the vHS peak.

13.
Nano Lett ; 21(2): 1096-1101, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33427471

RESUMO

Confining carbyne to a space that allows for stability and controlled reactivity is a very appealing approach to have access to materials with tunable optical and electronic properties without rival. Here, we show how controlling the diameter of single-walled carbon nanotubes opens the possibility to grow a confined carbyne with a defined and tunable band gap. The metallicity of the tubes has a minimal influence on the formation of the carbyne, whereas the diameter plays a major role in the growth. It has been found that the properties of confined carbyne can be tailored independently from its length and how these are mostly determined by its interaction with the carbon nanotube. Molecular dynamics simulations have been performed to interpret these findings. Furthermore, the choice of a single-walled carbon nanotube host has been proven crucial even to synthesize an enriched carbyne with the smallest energy gap currently reported and with remarkable homogeneity.

14.
J Am Chem Soc ; 143(24): 9105-9112, 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34047552

RESUMO

Hydrogen spillover is the phenomenon where a hydrogen atom, generated from the dissociative chemisorption of dihydrogen on the surface of a metal species, migrates from the metal to the catalytic support. This phenomenon is regarded as a promising avenue for hydrogen storage, yet the atomic mechanism for how the hydrogen atom can be transferred to the support has remained controversial for decades. As a result, the development of catalytic support for such a purpose is only limited to typical reducible oxide materials. Herein, by using a combination of in situ spectroscopic and imaging technique, we are able to visualize and observe the atomic pathway for which hydrogen travels via a frustrated Lewis pair that has been constructed on a nonreducible metal oxide. The interchangeable status between the hydrogen, proton, and hydride is carefully characterized and demonstrated. It is envisaged that this study has opened up new design criteria for hydrogen storage material.

15.
Small ; 17(17): e2007171, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33711202

RESUMO

Band structure by design in 2D layered semiconductors is highly desirable, with the goal to acquire the electronic properties of interest through the engineering of chemical composition, structure, defect, stacking, or doping. For atomically thin transition metal dichalcogenides, substitutional doping with more than one single type of transition metals is the task for which no feasible approach is proposed. Here, the growth of WS2 monolayer is shown codoped with multiple kinds of transition metal impurities via chemical vapor deposition controlled in a diffusion-limited mode. Multielement embedment of Cr, Fe, Nb, and Mo into the host lattice is exemplified. Abundant impurity states thus generate in the bandgap of the resultant WS2 and provide a robust switch of charging/discharging states upon sweep of an electric filed. A profound memory window exists in the transfer curves of doped WS2 field-effect transistors, forming the basis of binary states for robust nonvolatile memory. The doping technique presented in this work brings one step closer to the rational design of 2D semiconductors with desired electronic properties.

16.
Phys Rev Lett ; 124(8): 087401, 2020 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-32167311

RESUMO

Excitons, as bound electron-hole paired quasiparticle, play an essential role in the energy transport in the optical-electric properties of semiconductors. Their momentum-energy dispersion relation is a fundamental physical property of great significance to understand exciton dynamics. However, this dispersion is seldom explored especially in two-dimensional transition metal dichalcogenides with rich valleytronic properties. In this work, momentum resolved electron energy-loss spectroscopy was used to measure the dispersions of excitons in freestanding monolayer WSe_{2}. Besides the parabolically dispersed valley excitons, a subgap dispersive exciton was observed at nonzero momenta for the first time, which can be introduced by the prolific Se vacancies. Our work provides a paradigm to directly probe exciton dispersions in 2D semiconductors and could be generalized to many low-dimensional systems.

17.
Nano Lett ; 19(8): 4845-4851, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-30798600

RESUMO

The successful isolation of single layers from two-dimensional (2D) van der Waals (vdW)-layered materials has opened new frontiers in condensed matter physics and materials science. Their discovery and unique properties laid the foundation for exploring 1D counterparts. However, the isolation of 1D vdW-wired materials has thus far remained a challenge, and effective techniques are demanded. Here we report the facile synthesis of isolated transition-metal monochalcogenide MoTe nanowires by using carbon nanotubes (CNTs) as molds. Individual nanowires are perfectly separated by CNTs with a minimal interaction, enabling detailed characterization of the single wires. Transmission electron microscopy revealed unusual torsional motion of MoTe nanowires inside CNTs. Confinement of 1D vdW-wired materials to the nanotest tubes might open up possibilities for exploring unprecedented properties of the nanowires and their potential applications such as electromechanical switching devices.

18.
Angew Chem Int Ed Engl ; 59(37): 16013-16022, 2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32568423

RESUMO

Understanding the thermal aggregation behavior of metal atoms is important for the synthesis of supported metal clusters. Here, derived from a metal-organic framework encapsulating a trinuclear FeIII 2 FeII complex (denoted as Fe3 ) within the channels, a well-defined nitrogen-doped carbon layer is fabricated as an ideal support for stabilizing the generated iron nanoclusters. Atomic replacement of FeII by other metal(II) ions (e.g., ZnII /CoII ) via synthesizing isostructural trinuclear-complex precursors (Fe2 Zn/Fe2 Co), namely the "heteroatom modulator approach", is inhibiting the aggregation of Fe atoms toward nanoclusters with formation of a stable iron dimer in an optimal metal-nitrogen moiety, clearly identified by direct transmission electron microscopy and X-ray absorption fine structure analysis. The supported iron dimer, serving as cooperative metal-metal site, acts as efficient oxygen evolution catalyst. Our findings offer an atomic insight to guide the future design of ultrasmall metal clusters bearing outstanding catalytic capabilities.

19.
Nat Mater ; 17(6): 535-542, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29686277

RESUMO

Chemical vapour deposition of two-dimensional materials typically involves the conversion of vapour precursors to solid products in a vapour-solid-solid mode. Here, we report the vapour-liquid-solid growth of monolayer MoS2, yielding highly crystalline ribbons with a width of few tens to thousands of nanometres. This vapour-liquid-solid growth is triggered by the reaction between MoO3 and NaCl, which results in the formation of molten Na-Mo-O droplets. These droplets mediate the growth of MoS2 ribbons in the 'crawling mode' when saturated with sulfur. The locally well-defined orientations of the ribbons reveal the regular horizontal motion of the droplets during growth. Using atomic-resolution scanning transmission electron microscopy and second harmonic generation microscopy, we show that the ribbons are grown homoepitaxially on monolayer MoS2 with predominantly 2H- or 3R-type stacking. Our findings highlight the prospects for the controlled growth of atomically thin nanostructure arrays for nanoelectronic devices and the development of unique mixed-dimensional structures.

20.
Chemistry ; 25(47): 11105-11113, 2019 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-31152611

RESUMO

Herein, it is demonstrated that pyrene butyric acid (PBA)-stabilized metal nanoparticles with core-shell morphology, Pd@MNPs (M=Ni, Cu, Co), non-covalently supported on graphene (G) sheets, are more active towards oxygen electroreduction in alkaline environments than the benchmark Pd/C catalyst, albeit with a 70 % lower precious metal loading. The PBA-stabilized Pd@MNPs (M=Ni, Cu, Co)/G ensembles were prepared by employing a simple modified polyol method and galvanic replacement and thoroughly characterized with advanced microscopy imaging and complementary spectroscopic techniques. Electrochemical studies revealed that Pd@NiNPs /G presents the optimum performance, exhibiting a 30 mV more positive onset potential and 3.2 times greater mass activity over Pd/C. Moreover, chronoamperometric assays showed the minimum activity loss for Pd@NiNPs /G, not only among its core-shell counterparts but importantly when compared with the benchmark catalyst. The excellent performance of Pd@NiNPs /G was attributed to the (a) presence of PBA as stabilizer, (b) uniform Pd@NiNPs dispersion onto the graphene sheets, (c) efficient intra-ensemble interactions between the two species, (d) existence of the core-shell structure for Pd@NiNPs , and (e) stability of the Ni core metal under the reaction conditions. Last, the oxygen reduction on Pd@NiNPs /graphene occurs by the direct four-electron reduction pathway, showing great potential for use in energy related applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA