Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Int J Mol Sci ; 19(11)2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30469389

RESUMO

When using small mole fraction increments to study gramicidins in phospholipid membranes, we found that the phasor dots of intrinsic fluorescence of gramicidin D and gramicidin A in dimyristoyl-sn-glycero-3-phosphocholine (DMPC) unilamellar and multilamellar vesicles exhibit a biphasic change with peptide content at 0.143 gramicidin mole fraction. To understand this phenomenon, we developed a statistical mechanical model of gramicidin/DMPC mixtures. Our model assumes a sludge-like mixture of fluid phase and aggregates of rigid clusters. In the fluid phase, gramicidin monomers are randomly distributed. A rigid cluster is formed by a gramicidin dimer and DMPC molecules that are condensed to the dimer, following particular stoichiometries (critical gramicidin mole fractions, Xcr including 0.143). Rigid clusters form aggregates in which gramicidin dimers are regularly distributed, in some cases, even to superlattices. At Xcr, the size of cluster aggregates and regular distributions reach a local maximum. Before a similar model was developed for cholesterol/DMPC mixtures (Sugar and Chong (2012) J. Am. Chem. Soc. 134, 1164⁻1171) and here the similarities and differences are discussed between these two models.


Assuntos
Gramicidina/química , Bicamadas Lipídicas/química , Modelos Teóricos , Dimiristoilfosfatidilcolina/química , Fenômenos Mecânicos , Espectrometria de Fluorescência
2.
Biophys J ; 112(5): 997-1009, 2017 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-28297658

RESUMO

The mechanisms that discriminate self- and foreign antigen before T cell activation are unresolved. As part of the immune system's adaptive response to specific infections or neoplasms, antigen-presenting cells (APC) and effector T cells form transcellular molecular complexes. CTLA4 expression on regulatory or effector T cells reduces T cell activation. The CTLA4 transendocytosis hypothesis proposes that CTLA4 depletes CD80 and CD86 proteins from the APC membrane, rendering the APC incapable of activating T cells. We developed a multiscale spatiotemporal model for the interaction of a T cell and APC. Formation of the immune complex between T cell and APC starts with formation of the transmembrane complexes between the major histocompatibility complex and the T cell receptor (Signal 1) and between CD80 or CD86 and CD28 (Signal 2) at the opposing membrane surfaces of the interacting cells. By 0.01 s after contact simulation, an increasing concentration gradient of the free membrane proteins develops between the opposing surfaces and spherical parts of each cell's membrane, reaching a maximum at ∼30 s. Over several hours, diffusion across the gradient equalizes the free protein concentrations. During this phase, CTLA4 surface expression and its complexation with CD80/CD86 cause internalization and degradation of CD80/CD86. The simulation results show reasonable agreement with reported experimental data and indicate that key molecular processes take place over a very broad timescale, covering five orders of magnitude. Besides the fast complexation reactions, diffusion-limited processes, especially lateral diffusion in cell membranes and geometrical constraints, considerably slow down evolution of the synapse. Our results are consistent with the CTLA4 transendocytosis hypothesis and suggest the importance of lateral diffusion of surface proteins in contributing to a gradual increase in Signal 1 and Signal 2.


Assuntos
Antígeno B7-1/metabolismo , Sinapses Imunológicas/metabolismo , Modelos Biológicos , Antígeno CTLA-4/metabolismo
3.
Biophys J ; 104(11): 2448-55, 2013 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-23746517

RESUMO

In lipid membranes, temperature-induced transition from gel-to-fluid phase increases the lateral diffusion of the lipid molecules by three orders of magnitude. In cell membranes, a similar phase change may trigger the communication between the membrane components. Here concentration-induced phase transition properties of our recently developed statistical mechanical model of cholesterol/phospholipid mixtures are investigated. A slight (<1%) decrease in the model parameter values, controlling the lateral interaction energies, reveals the existence of a series of first- or second-order phase transitions. By weakening the lateral interactions first, the proportion of the ordered (i.e., superlattice) phase (Areg) is slightly and continuously decreasing at every cholesterol mole fraction. Then sudden decreases in Areg appear at the 0.18-0.26 range of cholesterol mole fractions. We point out that the sudden changes in Areg represent first- or second-order concentration-induced phase transitions from fluid to superlattice and from superlattice to fluid phase. Sudden changes like these were detected in our previous experiments at 0.2, 0.222, and 0.25 sterol mole fractions in ergosterol/DMPC mixtures. By further decreasing the lateral interactions, the fluid phase will dominate throughout the 0.18-0.26 interval, whereas outside this interval sudden increases in Areg may appear. Lipid composition-induced phase transitions as specified here should have far more important biological implications than temperature- or pressure-induced phase transitions. This is the case because temperature and pressure in cell membranes are largely invariant under physiological conditions.


Assuntos
Membrana Celular/química , Membrana Celular/metabolismo , Colesterol/metabolismo , Modelos Moleculares , Transição de Fase , Fosfatidilcolinas/metabolismo , Temperatura , Termodinâmica
4.
Biophys J ; 102(9): 2086-94, 2012 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-22824272

RESUMO

Liposomal drugs are a useful alternative to conventional drugs and hold great promise for targeted delivery in the treatment of many diseases. Most of the liposomal drugs on the market or under clinical trials include cholesterol as a membrane stabilizing agent. Here, we used liposomal CA4P, an antivascular drug, to demonstrate that cholesterol content can actually modulate the release and cytotoxicity of liposomal drugs in a delicate and predictable manner. We found that both the rate of the CA4P release from the interior aqueous compartment of the liposomes to the bulk aqueous phase and the extent of the drug's cytotoxicity undergo a biphasic variation, as large as 50%, with liposomal cholesterol content at the theoretically predicted C(r), e.g., 22.0, 22.2, 25.0, 33.3, 40.0, and 50.0 mol % cholesterol for maximal superlattice formation. It appears that at C(r), CA4P can be released from the liposomes more readily than at non-C(r), probably due to the increased domain boundaries between superlattice and nonsuperlattice regions, which consequently results in increased cytotoxicity. The idea that the increased domain boundaries at C(r) would facilitate the escape of molecules from membranes was further supported by the data of dehydroergosterol transfer from liposomes to MßCD. These results together show that the functional importance of sterol superlattice formation in liposomes can be propagated to distal targeted cells and reveal a new, to our knowledge, mechanism for how sterol content and membrane lateral organization can control the release of entrapped or embedded molecules in membranes.


Assuntos
Neoplasias da Mama/patologia , Neoplasias da Mama/fisiopatologia , Preparações de Ação Retardada/química , Lipossomos/química , Estilbenos/administração & dosagem , Estilbenos/química , Antineoplásicos Fitogênicos/administração & dosagem , Antineoplásicos Fitogênicos/química , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Sobrevivência Celular , Difusão , Composição de Medicamentos/métodos , Feminino , Humanos
5.
J Am Chem Soc ; 134(2): 1164-71, 2012 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-22196210

RESUMO

Despite extensive studies for nearly three decades, lateral distribution of molecules in cholesterol/phospholipid bilayers remains elusive. Here we present a statistical mechanical model of cholesterol/phospholipid mixtures that is able to rationalize almost every critical mole fraction (X(cr)) value previously reported for sterol superlattice formation as well as the observed biphasic changes in membrane properties at X(cr). This model is able to explain how cholesterol superlattices and cholesterol/phospholipid condensed complexes are interrelated. It gives a more detailed characterization of the LG(I)region (a broader region than the liquid disordered-liquid ordered mixed-phase region), which is considered to be a sludgelike mixture of fluid phase and aggregates of rigid clusters. A rigid cluster is formed by a cholesterol molecule and phospholipid molecules that are condensed to the cholesterol. Rigid clusters of similar size tend to form aggregates, in which cholesterol molecules are regularly distributed into superlattices. According to this model, the extent and type of sterol superlattices, thus the lateral distribution of the entire membrane, should vary with cholesterol mole fraction in a delicate, predictable, and nonmonotonic manner, which should have profound functional implications.


Assuntos
Colesterol/química , Modelos Químicos , Modelos Estatísticos , Fosfolipídeos/química , Bicamadas Lipídicas/química
6.
Membranes (Basel) ; 12(10)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36295706

RESUMO

By using the recently generalized version of Newton's shell theorem, analytical equations are derived to calculate the electric interaction energy between two separated, charged spheres surrounded outside and inside by electrolyte. This electric interaction energy is calculated as a function of the electrolyte's ion concentration, temperature, distance between the spheres and size of the spheres. At the same distance between the spheres, the absolute value of the interaction energy decreases with increasing electrolyte ion concentration and increases with increasing temperature. At zero electrolyte ion concentration, the derived analytical equation transforms into the Coulomb Equation Finally, the analytical equation is generalized to calculate the electric interaction energy of N separated, charged spheres surrounded by electrolyte.

7.
Cytometry A ; 79(5): 356-60, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21485003

RESUMO

Conventional compensation of flow cytometry (FMC) data of an N-stained sample requires additional data sets, of N single-stained control samples, to estimate the spillover coefficients. Single-stained controls however are the least rigorous controls because any of the multi-stained controls are closer to the N-stained sample. In this article, a new, optimization based, compensation method has been developed that is able to use not only single- but also multi-stained controls to improve estimates of the spillover coefficients. The method is demonstrated on a data set from five-stained dentritic cells (DCs) with five single-stained and eight multi-stained controls. This approach is practical and leads to significant improvements in FCM compensation.


Assuntos
Algoritmos , Citometria de Fluxo/métodos , Células Dendríticas/citologia , Citometria de Fluxo/tendências , Análise Multivariada , Coloração e Rotulagem
8.
BMC Bioinformatics ; 11: 502, 2010 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-20932336

RESUMO

BACKGROUND: There are many important clustering questions in computational biology for which no satisfactory method exists. Automated clustering algorithms, when applied to large, multidimensional datasets, such as flow cytometry data, prove unsatisfactory in terms of speed, problems with local minima or cluster shape bias. Model-based approaches are restricted by the assumptions of the fitting functions. Furthermore, model based clustering requires serial clustering for all cluster numbers within a user defined interval. The final cluster number is then selected by various criteria. These supervised serial clustering methods are time consuming and frequently different criteria result in different optimal cluster numbers. Various unsupervised heuristic approaches that have been developed such as affinity propagation are too expensive to be applied to datasets on the order of 106 points that are often generated by high throughput experiments. RESULTS: To circumvent these limitations, we developed a new, unsupervised density contour clustering algorithm, called Misty Mountain, that is based on percolation theory and that efficiently analyzes large data sets. The approach can be envisioned as a progressive top-down removal of clouds covering a data histogram relief map to identify clusters by the appearance of statistically distinct peaks and ridges. This is a parallel clustering method that finds every cluster after analyzing only once the cross sections of the histogram. The overall run time for the composite steps of the algorithm increases linearly by the number of data points. The clustering of 106 data points in 2D data space takes place within about 15 seconds on a standard laptop PC. Comparison of the performance of this algorithm with other state of the art automated flow cytometry gating methods indicate that Misty Mountain provides substantial improvements in both run time and in the accuracy of cluster assignment. CONCLUSIONS: Misty Mountain is fast, unbiased for cluster shape, identifies stable clusters and is robust to noise. It provides a useful, general solution for multidimensional clustering problems. We demonstrate its suitability for automated gating of flow cytometry data.


Assuntos
Citometria de Fluxo/métodos , Software , Algoritmos , Análise por Conglomerados , Bases de Dados Factuais
9.
J Phys Chem B ; 113(31): 10946-56, 2009 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-19601596

RESUMO

An autocrine/paracrine signaling model in epithelial layers is described. The axially symmetric model of the epithelial layer explicitly considers the microvilli of the epithelial cells and the gaps between nearest neighbor microvilli. Ligand trapping site distribution functions and probability of autocrine signaling are calculated for different epithelial geometries and ligand sources by numerically solving the inhomogeneous stationary diffusion equation, the Poisson equation. In general, the global characteristics of the trapping site distribution curves are similar to the ones obtained for a planar epithelial model, and the superimposed small periodical changes of the curves reflect the details of the epithelial geometry. However, when ligands are emitted into a narrow gap between nearest neighbor microvilli the probability of local trapping is particularly high, causing a locally large deviation from the overall behavior of the trapping site distribution curves. If the microvilli of the cell are closely packed, then the probability of paracrine signaling is about 0.2. However, this probability jumps to about 0.5 if the cell is able to slightly loosen the tight packing, for example, by decreasing the diameter of the microvilli by only 2%. On the basis of our calculations, alteration of microvillus geometry represents a mechanism by which epithelial cells can efficiently regulate intercellular signaling.


Assuntos
Comunicação Autócrina , Células Epiteliais/citologia , Comunicação Parácrina , Modelos Biológicos
10.
J Phys Chem B ; 112(37): 11631-42, 2008 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-18729402

RESUMO

It has been shown on model and biological systems that membrane clusters can affect in-plane membrane reactions and can control biochemical reaction cascades. Clusters of two-component phospholipid bilayers have been simulated by two Ising-type lattice models: the monomer and the dimer model. In each model the plane of one layer of the bilayer is represented by a triangular lattice, each site of which is occupied by an acyl chain of either a component 1 or a component 2 lipid molecule. The dimer model assumes that pairs of acyl chains (lipid molecules) are permanently connected, forming dimers on the lattice, while in the case of the monomer model this covalent connection between acyl chains is ignored. Phase diagrams of two-component phospholipid bilayers were successfully calculated by both models. In this work, we use Monte Carlo techniques to calculate thermodynamic averages of global and local characteristics of the largest component 2 cluster (such as outer/inner perimeter, percolation, minimal linear size, and local density) and compare the results obtained by the two models. A new method is developed to characterize the inner structure of the clusters. Each point of a cluster is classified based on its shortest distance (or depth) from the cluster's outer perimeter. Then local cluster properties, such as density, are calculated as a function of the depth. The depth analysis reveals that toward the cluster interior the average density usually decreases in midsize clusters and remains constant in very large clusters. On the basis of the simulations the following typical cluster topologies are identified at different cluster sizes and cooperativity parameter values: (i) branch-like, (ii) circular, (iii) band-like, and (iv) planar.We did not find qualitative differences between the cluster structures in the dimer and monomer model. However, at the same cluster size and cooperativity parameter value the cluster of the dimer model is more compact. The cluster properties of the dimer model are different from that of the monomer model because of the lower mixing entropy and higher formation energy of an elementary inner island.


Assuntos
Bicamadas Lipídicas/química , Fosfolipídeos/química , Simulação por Computador , Dimerização , Modelos Biológicos , Método de Monte Carlo , Termodinâmica
11.
J Phys Chem B ; 111(16): 4073-81, 2007 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-17394303

RESUMO

Two models have been developed to describe the adsorption of a model peripheral protein, colipase, to phospholipid/diacylglycerol (PL/DG) monolayers. One model is applicable at monolayer collapse pressure and at any composition that exceeds the DG mole fraction of PL/DG lateral complexes (Sugár, I. P.; Mizuno, N. K.; Momsen, M. M.; Brockman, H. L. Biophys. J. 2001, 81, 3387-3397). The other model is applicable at any lateral pressure but only below the mole fraction of DG in the complex (Sugár, I. P.; Mizuno, N. K.; Brockman, H. L. Biophys. J. 2005, 89, 3997-4005). Both models assume that initiation of colipase adsorption to the water/lipid interface requires an area of water-exposed hydrophobic surface that exceeds a critical value. In the first model, accessible surface is provided by the head groups of the uncomplexed DG molecules. This surface area follows a binomial distribution. In the second model, accessible area is created by hydrocarbon chains becoming exposed at the water/lipid interface as total lipid packing density of monolayers of PL and/or PL/DG complexes is decreased. This surface area follows a Poisson distribution. The model described in this paper is a unification, extension, and improvement of these models that is applicable at any lateral pressure and any PL/DG mole fraction. Calculated normalized initial colipase adsorption rates are compared with the available experimental values, and predictions of the adsorption rates are made for currently unmeasured compositions and lateral pressure regimes.


Assuntos
Lipídeos/química , Proteínas/química , Água/química , Adsorção
12.
J Phys Chem B ; 111(19): 5180-92, 2007 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-17441759

RESUMO

Here we use the excitation generalized polarization (GPex) of 6-lauroyl-2-(dimethylamino)naphthalene (Laurdan) fluorescence in fluid cholesterol/1-palmitoyl-2-oleoyl-l-alpha-phosphatidylcholine large unilamellar vesicles to explore the experimental conditions that would be required in order to detect a biphasic change in membrane properties at specific sterol mole fractions (Cr) (e.g., 20.0, 22.2, 25.0, 33.3, 40.0, and 50.0 mol %) for maximal sterol superlattice formation. Laurdan's GPex changes with sterol content in an alternating manner, showing minima (termed as GPex dips) at approximately Cr. GPex dips are detectable if the vesicles are preincubated for a sufficient time period and protected from sterol oxidation. In most cases, vesicles with a higher lipid concentration take a longer time to show a GPex dip at Cr. The depth of the GPex dip increases with increasing incubation time and eventually reaches a plateau, at which the maximum area covered by superlattices is expected to be achieved. However, if the vesicles are not protected against sterol oxidation, the GPex dips are attenuated or obliterated. These effects can be attributed to the increased inter-bilayer lipid exchange and the increased vesicle-vesicle interactions present at high lipid (vesicle) concentrations as well as the decreased interactions between oxysterols and phospholipids. These possible explanations have been incorporated into a kinetic model that is able to calculate the effects of sterol oxidation and lipid concentration on the depth of the GPex dip. The depth of the GPex dip, the required incubation time for the dip formation, and the lipid concentration dependence of the GPex dip vary with Cr, suggesting different physical properties for different sterol superlattices. To detect a biphasic change in membrane properties at Cr, one should also use small sterol mole fraction increments over a wide range, keep all of the vesicles in the same sample set under the same thermal history, and consider lipid concentration, probe type, and Cr value. These results improve our mechanistic understanding of sterol superlattice formation and explain why some studies, especially those requiring high lipid concentrations, did not detect a biphasic change in membrane properties at Cr.


Assuntos
Membranas Artificiais , Esteróis/química , 2-Naftilamina/análogos & derivados , 2-Naftilamina/química , Lauratos/química , Modelos Químicos , Oxirredução , Transição de Fase , Fatores de Tempo
14.
J Phys Chem B ; 109(15): 7373-86, 2005 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-16851844

RESUMO

Lateral diffusion of membrane components makes possible any in-plane membrane reaction and has a key role in signaling in cell membranes. In this report the equilibrium lateral diffusion of intrinsic molecules in an equimolar DMPC/DSPC mixture is simulated using a thoroughly tested two-state model of two-component phospholipid bilayers. The model has been successful in calculating the excess heat capacity function, the most frequent center-to-center distances between DSPC clusters, and the fractal dimensions of gel clusters (Sugar, I. P., Thompson, T. E., Biltonen, R. L. Biophys. J. 1999, 76, 2099-2110). In the gel/fluid mixed phase region, a diffusing intrinsic molecule may change its state from fluid to gel (or from gel to fluid) at any time. A common characterization of the diffusion of intrinsic molecules is given by the simulated average first-passage time curves. We find that these curves can be described as power functions containing two parameters, alpha and beta, except near the percolation threshold of gel/fluid or compositional clusters. We find also that the intrinsic molecules are involved in approximately normal diffusion, i.e., beta approximately 2 in the extreme gel and fluid phase regions, while in the gel/fluid and gel/gel mixed phase regions the diffusion is anomalous, i.e., beta not equal 2. In the mixed phase regions, when the initial local state of the diffusing molecule is not specified, each component is involved in sub-diffusion (beta > 2). In the gel/fluid mixed phase region molecules situated initially inside a fluid cluster are involved in sub-diffusion, but DMPC molecules situated initially inside a gel cluster are involved in super-diffusion (beta < 2). The possibility of anomalous diffusion in membranes apparently arises because the diffusing molecule visits a variety of different environments characterized by its relative proximity to various membrane components. The diffusion is actually anomalous when the components of the bilayer are nonrandomly distributed. The deviation from random distribution is strongly correlated with beta. Similar to the results of the NMR experiments, the calculated relative diffusion coefficient continuously decreases in the gel/fluid mixed phase region with decreasing temperature. In apparent contradiction, diffusion measured by fluorescence recovery after photobleaching (FRAP) demonstrates the existence of a threshold temperature, below which long-range diffusion of FRAP probe molecules is essentially blocked. This threshold temperature is highly correlated with the percolation temperature of gel clusters.


Assuntos
Físico-Química/métodos , Bicamadas Lipídicas/química , Simulação por Computador , Difusão , Dimiristoilfosfatidilcolina/química , Géis/química , Espectroscopia de Ressonância Magnética , Modelos Químicos , Modelos Estatísticos , Método de Monte Carlo , Análise Multivariada , Fosfatidilcolinas/química , Temperatura , Termodinâmica , Fatores de Tempo
15.
Chem Phys Lipids ; 116(1-2): 153-75, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12093540

RESUMO

This article reviews the use of fluorescent lipids and free probes in the studies of lipid regular distribution in model membranes. The first part of this article summarizes the evidence and physical properties for lipid regular distribution in pyrene-labeled phosphatidylcholine (PC)/unlabeled PC binary mixtures as revealed by the fluorescence of pyrene-labeled PC. The original and the extended hexagonal superlattice model are discussed. The second part focuses on the fluorescence studies of sterol regular distributions in membranes. The experimental evidence for sterol superlattice formation obtained from the fluorescent sterol (i.e. dehydroergosterol) and non-sterol fluorescent probes (e.g. DPH and Laurdan) are evaluated. Prospects and concerns are given with regard to the sterol regular distribution. The third part deals briefly with the evidence for polar headgroup superlattices. The emphasis of this article is placed on the new concept that membrane properties and activities, including the activities of surface acting enzymes, drug partitioning, and membrane free volume, are fine-tuned by minute changes in the concentration of bulky lipids (e.g. sterols and pyrene-containing acyl chains) in the vicinities of the critical mole fractions for superlattice formation.


Assuntos
Metabolismo dos Lipídeos , Lipossomos/química , Colesterol/farmacologia , Difusão , Corantes Fluorescentes , Lipídeos/química , Modelos Químicos , Pirenos , Espectrometria de Fluorescência , Esteróis/farmacologia
16.
Int J Biomed Imaging ; 2010: 125850, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20414462

RESUMO

Lipid lateral organization in binary-constituent monolayers consisting of fluorescent and nonfluorescent lipids has been investigated by acquiring multiple emission spectra during measurement of each force-area isotherm. The emission spectra reflect BODIPY-labeled lipid surface concentration and lateral mixing with different nonfluorescent lipid species. Using principal component analysis (PCA) each spectrum could be approximated as the linear combination of only two principal vectors. One point on a plane could be associated with each spectrum, where the coordinates of the point are the coefficients of the linear combination. Points belonging to the same lipid constituents and experimental conditions form a curve on the plane, where each point belongs to a different mole fraction. The location and shape of the curve reflects the lateral organization of the fluorescent lipid mixed with a specific nonfluorescent lipid. The method provides massive data compression that preserves and emphasizes key information pertaining to lipid distribution in different lipid monolayer phases. Collectively, the capacity of PCA for handling large spectral data sets, the nanoscale resolution afforded by the fluorescence signal, and the inherent versatility of monolayers for characterization of lipid lateral interactions enable significantly enhanced resolution of lipid lateral organizational changes induced by different lipid compositions.

17.
J Biol Chem ; 284(20): 13620-13628, 2009 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-19270338

RESUMO

Glycolipid transfer proteins (GLTPs) are small, soluble proteins that selectively accelerate the intermembrane transfer of glycolipids. The GLTP fold is conformationally unique among lipid binding/transfer proteins and serves as the prototype and founding member of the new GLTP superfamily. In the present study, changes in human GLTP tryptophan fluorescence, induced by membrane vesicles containing glycolipid, are shown to reflect glycolipid binding when vesicle concentrations are low. Characterization of the glycolipid-induced "signature response," i.e. approximately 40% decrease in Trp intensity and approximately 12-nm blue shift in emission wavelength maximum, involved various modes of glycolipid presentation, i.e. microinjection/dilution of lipid-ethanol solutions or phosphatidylcholine vesicles, prepared by sonication or extrusion and containing embedded glycolipids. High resolution x-ray structures of apo- and holo-GLTP indicate that major conformational alterations are not responsible for the glycolipid-induced GLTP signature response. Instead, glycolipid binding alters the local environment of Trp-96, which accounts for approximately 70% of total emission intensity of three Trp residues in GLTP and provides a stacking platform that aids formation of a hydrogen bond network with the ceramide-linked sugar of the glycolipid headgroup. The changes in Trp signal were used to quantitatively assess human GLTP binding affinity for various lipids including glycolipids containing different sugar headgroups and homogenous acyl chains. The presence of the glycolipid acyl chain and at least one sugar were essential for achieving a low-to-submicromolar dissociation constant that was only slightly altered by increased sugar headgroup complexity.


Assuntos
Proteínas de Transporte/química , Glicolipídeos/química , Triptofano/química , Proteínas de Transporte/metabolismo , Fluorescência , Glicolipídeos/metabolismo , Humanos , Ligação de Hidrogênio , Ligação Proteica/fisiologia , Triptofano/metabolismo
18.
Biophys J ; 83(4): 1820-33, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12324404

RESUMO

In this paper a two-state, two-component, Ising-type model is used to simulate the lateral distribution of the components and gel/fluid state acyl chains in dimyristoylphosphatidylcholine/distearoylphosphatidylcholine (DMPC/DSPC) lipid bilayers. The same model has been successful in calculating the excess heat capacity curves, the fluorescence recovery after photobleaching (FRAP) threshold temperatures, the most frequent center-to-center distances between DSPC clusters, and the fractal dimensions of gel clusters (Sugar, I. P., T. E. Thompson, and R. L. Biltonen, 1999. Biophys. J. 76:2099-2110). Depending on the temperature and mole fraction the population of the cluster size is either homogeneous or inhomogeneous. In the inhomogeneous population the size of the largest cluster scales with the size of the system, while the rest of the clusters remain small with increasing system size. In a homogeneous population, however, every cluster remains small with increasing system size. For both compositional and fluid/gel state clusters, threshold temperatures-the so-called percolation threshold temperatures-are determined where change in the type of the population takes place. At a given mole fraction, the number of percolation threshold temperatures can be 0, 1, 2, or 3. By plotting these percolation threshold temperatures on the temperature/mole fraction plane, the diagrams of component and state separation of DMPC/DSPC bilayers are constructed. In agreement with the small-angle neutron scattering measurements, the component separation diagram shows nonrandom lateral distribution of the components not only in the gel-fluid mixed phase region, but also in the pure gel and pure fluid regions. A combined diagram of component and state separation is constructed to characterize the lateral distribution of lipid components and gel/fluid state acyl chains in DMPC/DSPC mixtures. While theoretical phase diagrams of two component mixtures can be constructed only in the case of first-order transitions, state and component separation diagrams can be constructed whether or not the system is involved in first-order transition. The effects of interchain interactions on the component and state separation diagrams are demonstrated on three different models. The influences of state and component separation on the in-plane and off-plane membrane reactions are discussed.


Assuntos
Dimiristoilfosfatidilcolina/química , Fosfatidilcolinas/química , Fenômenos Biofísicos , Biofísica , Bicamadas Lipídicas , Membranas Artificiais , Método de Monte Carlo , Temperatura
19.
Biochemistry ; 43(8): 2159-66, 2004 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-14979712

RESUMO

Here, the interplay between membrane cholesterol lateral organization and the activity of membrane surface-acting enzymes was addressed using soil bacteria cholesterol oxidase (COD) as a model. Specifically, the effect of the membrane cholesterol mole fraction on the initial rate of cholesterol oxidation catalyzed by COD was investigated at 37 degrees C using cholesterol/1-palmitoyl-2-oleoyl-l-alpha-phosphatidylcholine (POPC) large unilamellar vesicles (LUVs, approximately 800 nm in diameter). In the three concentration ranges examined (18.8-21.2, 23.6-26.3, and 32.2-34.5 mol % cholesterol), the initial activity of COD changed with cholesterol mole fraction in a biphasic manner, exhibiting a local maximum at 19.7, 25.0, and 33.4 mol %. Within the experimental errors, these mole fractions agree with the critical cholesterol mole fractions (C(r)) (20.0, 25.0, and 33.3) theoretically predicted for maximal superlattice formation. The activity variation with cholesterol content was correlated well with the area of regular distribution (A(reg)) in the plane of the membrane as determined by nystatin fluorescence. A similar biphasic change in COD activity was detected at the critical sterol mole fraction 20 mol % in dehydroergosterol (DHE)/POPC LUVs (approximately 168 nm in diameter). These results indicate that the activity of COD is regulated by the extent of sterol superlattice for both sterols (DHE and cholesterol) and for a wide range of vesicle sizes (approximately 168-800 nm). The present work on COD and the previous study on phospholipase A(2) (sPLA(2)) [Liu and Chong (1999) Biochemistry 38, 3867-3873] suggest that the activities of some surface-acting enzymes may be regulated by the extent of sterol superlattice in the membrane in a substrate-dependent manner. When the substrate is a sterol, as it is with COD, the enzyme activity reaches a local maximum at C(r). When phospholipid is the substrate, the minimum activity is at C(r), as is the case with sPLA(2). Both phenomena are in accordance with the sterol superlattice model and manifest the functional importance of membrane cholesterol content.


Assuntos
Proteínas de Bactérias/química , Colesterol Oxidase/química , Colesterol/química , Ergosterol/análogos & derivados , Lipídeos de Membrana/química , Catálise , Ativação Enzimática , Ergosterol/química , Fosfolipases A2 do Grupo II , Cinética , Bicamadas Lipídicas/química , Nistatina/química , Fosfatidilcolinas/química , Fosfolipases A/química , Espectrometria de Fluorescência , Streptomyces/enzimologia , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA