Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Int J Cancer ; 145(5): 1382-1394, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30828788

RESUMO

Darolutamide is a novel androgen receptor (AR) antagonist with a distinct chemical structure compared to other AR antagonists and currently in clinical Phase 3 trials for prostate cancer. Using cell-based transactivation assays, we demonstrate that darolutamide, its diastereomers and its main metabolite keto-darolutamide are strong, competitive antagonists for AR wild type, and also for several mutants identified in prostate cancer patients for which other AR antagonists show reduced antagonism or even agonism. Darolutamide, its two diastereomers and main metabolite are also strong antagonists in assays measuring AR N/C interaction and homodimerization. Molecular modeling suggests that the flexibility of darolutamide allows accommodation in the W742C/L mutated AR ligand-binding pocket while for enzalutamide the loss of the important hydrophobic interaction with W742 leads to reduced AR interaction. This correlates with an antagonistic pattern profile of coregulator recruitment for darolutamide. In vitro efficacy studies performed with androgen-dependent prostate cancer cell lines show that darolutamide strongly reduces cell viability and potently inhibits spheroid formation. Also, a marked down-regulation of androgen target genes paralleled by decreased AR binding to gene regulatory regions is seen. In vivo studies reveal that oral dosing of darolutamide markedly reduces growth of the LAPC-4 cell line-derived xenograft and of the KuCaP-1 patient-derived xenograft. Altogether, these results substantiate a unique antagonistic profile of darolutamide and support further development as a prostate cancer drug.


Assuntos
Antagonistas de Receptores de Andrógenos/farmacologia , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/metabolismo , Pirazóis/farmacologia , Receptores Androgênicos/metabolismo , Antagonistas de Receptores de Andrógenos/química , Animais , Linhagem Celular Tumoral , Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos SCID , Modelos Moleculares , Neoplasias de Próstata Resistentes à Castração/genética , Domínios Proteicos , Pirazóis/química , Receptores Androgênicos/química , Receptores Androgênicos/genética , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Mol Oncol ; 18(3): 726-742, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38225213

RESUMO

Prostate cancer is a frequent malignancy in older men and has a very high 5-year survival rate if diagnosed early. The prognosis is much less promising if the tumor has already spread outside the prostate gland. Targeted treatments mainly aim at blocking androgen receptor (AR) signaling and initially show good efficacy. However, tumor progression due to AR-dependent and AR-independent mechanisms is often observed after some time, and novel treatment strategies are urgently needed. Dysregulation of the PI3K/AKT/mTOR pathway in advanced prostate cancer and its implication in treatment resistance has been reported. We compared the impact of PI3K/AKT/mTOR pathway inhibitors with different selectivity profiles on in vitro cell proliferation and on caspase 3/7 activation as a marker for apoptosis induction, and observed the strongest effects in the androgen-sensitive prostate cancer cell lines VCaP and LNCaP. Combination treatment with the AR inhibitor darolutamide led to enhanced apoptosis in these cell lines, the effects being most pronounced upon cotreatment with the pan-PI3K inhibitor copanlisib. A subsequent transcriptomic analysis performed in VCaP cells revealed that combining darolutamide with copanlisib impacted gene expression much more than individual treatment. A comprehensive reversal of the androgen response and the mTORC1 transcriptional programs as well as a marked induction of DNA damage was observed. Next, an in vivo efficacy study was performed using the androgen-sensitive patient-derived prostate cancer (PDX) model LuCaP 35 and a superior efficacy was observed after the combined treatment with copanlisib and darolutamide. Importantly, immunohistochemistry analysis of these treated tumors showed increased apoptosis, as revealed by elevated levels of cleaved caspase 3 and Bcl-2-binding component 3 (BBC3). In conclusion, these data demonstrate that concurrent blockade of the PI3K/AKT/mTOR and AR pathways has superior antitumor efficacy and induces apoptosis in androgen-sensitive prostate cancer cell lines and PDX models.


Assuntos
Neoplasias da Próstata , Proteínas Proto-Oncogênicas c-akt , Masculino , Humanos , Idoso , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Androgênicos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Caspase 3 , Androgênios , Serina-Treonina Quinases TOR/metabolismo , Neoplasias da Próstata/genética , Proliferação de Células , Apoptose , Linhagem Celular Tumoral
3.
Cancers (Basel) ; 15(1)2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36611998

RESUMO

Several inhibitors of androgen receptor (AR) function are approved for prostate cancer treatment, and their impact on gene transcription has been described. However, the ensuing effects at the protein level are far less well understood. We focused on the AR signaling inhibitor darolutamide and confirmed its strong AR binding and antagonistic activity using the high throughput cellular thermal shift assay (CETSA HT). Then, we generated comprehensive, quantitative proteomic data from the androgen-sensitive prostate cancer cell line VCaP and compared them to transcriptomic data. Following treatment with the synthetic androgen R1881 and darolutamide, global mass spectrometry-based proteomics and label-free quantification were performed. We found a generally good agreement between proteomic and transcriptomic data upon androgen stimulation and darolutamide inhibition. Similar effects were found both for the detected expressed genes and their protein products as well as for the corresponding biological programs. However, in a few instances there was a discrepancy in the magnitude of changes induced on gene expression levels compared to the corresponding protein levels, indicating post-transcriptional regulation of protein abundance. Chromatin immunoprecipitation DNA sequencing (ChIP-seq) and Hi-C chromatin immunoprecipitation (HiChIP) revealed the presence of androgen-activated AR-binding regions and long-distance AR-mediated loops at these genes.

4.
J Med Chem ; 60(9): 4002-4022, 2017 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-28402630

RESUMO

Bromodomains (BD) are readers of lysine acetylation marks present in numerous proteins associated with chromatin. Here we describe a dual inhibitor of the bromodomain and PHD finger (BRPF) family member BRPF2 and the TATA box binding protein-associated factors TAF1 and TAF1L. These proteins are found in large chromatin complexes and play important roles in transcription regulation. The substituted benzoisoquinolinedione series was identified by high-throughput screening, and subsequent structure-activity relationship optimization allowed generation of low nanomolar BRPF2 BD inhibitors with strong selectivity against BRPF1 and BRPF3 BDs. In addition, a strong inhibition of TAF1/TAF1L BD2 was measured for most derivatives. The best compound of the series was BAY-299, which is a very potent, dual inhibitor with an IC50 of 67 nM for BRPF2 BD, 8 nM for TAF1 BD2, and 106 nM for TAF1L BD2. Importantly, no activity was measured for BRD4 BDs. Furthermore, cellular activity was evidenced using a BRPF2- or TAF1-histone H3.3 or H4 interaction assay.


Assuntos
Histona Acetiltransferases/antagonistas & inibidores , Isoquinolinas/farmacologia , Proteínas Nucleares/antagonistas & inibidores , Fatores Associados à Proteína de Ligação a TATA/antagonistas & inibidores , Fator de Transcrição TFIID/antagonistas & inibidores , Fatores de Transcrição/antagonistas & inibidores , Animais , Proliferação de Células/efeitos dos fármacos , Chaperonas de Histonas , Humanos , Isomerismo , Isoquinolinas/química , Isoquinolinas/farmacocinética , Microssomos Hepáticos/efeitos dos fármacos , Estrutura Molecular , Relação Estrutura-Atividade
5.
Oncotarget ; 7(5): 6015-28, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26760770

RESUMO

Androgen receptor (AR) mutations arise in patients developing resistance to hormone deprivation therapies. Here we describe BAY 1024767, a thiohydantoin derivative with strong antagonistic activity against nine AR variants with mutations located in the AR ligand-binding domain (LBD), and against wild-type AR. Antagonism was maintained, though reduced, at increased androgen levels. Anti-tumor efficacy was evidenced in vivo in the KuCaP-1 prostate cancer model which bears the W741C bicalutamide resistance mutation and in the syngeneic prostate cancer rat model Dunning R3327-G. The prevalence of six selected AR mutations was determined in plasma DNA originating from 100 resistant patients and found to be at least 12%. Altogether the results show BAY 1024767 to be a strong antagonist for several AR mutants linked to therapy resistance, which opens the door for next-generation compounds that can benefit patients based on their mutation profile.


Assuntos
Antagonistas de Receptores de Andrógenos/farmacologia , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Receptores Androgênicos/genética , Tioidantoínas/farmacologia , Animais , Células COS , Células CACO-2 , Linhagem Celular Tumoral , Chlorocebus aethiops , Regulação para Baixo , Humanos , Masculino , Camundongos , Camundongos SCID , Mutação , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , Distribuição Aleatória , Ratos , Receptores Androgênicos/metabolismo , Transfecção , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Life Sci ; 70(18): 2113-24, 2002 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-12002804

RESUMO

G protein-coupled receptor (GPCR) subtypes are differentially distributed in the cell; however, it remains unclear how this affects the subtype selectivity of particular drugs. In the present study, we used flow cytometry analysis with the fluorescent ligand, BODIPY FL-prazosin, to study the relationship between the subcellular distribution of subtype receptors and the subtype-selective character of ligands using alpha1a and alpha1b-adrenoceptors (ARs). Alpha1a-ARs predominantly localize inside the cell, while alpha1b-ARs on the cell surface. Flow cytometry analysis and confocal laser-scanning micrographs of living cells showed that BODIPY FL-prazosin can label not only alpha1-ARs on the cell surface, but also those localized inside the cell. Furthermore, flow cytometry analysis of alpha1A-AR-selective drug, KMD-3213, and alpha1B-AR-selective drug, CEC, revealed that the major determinant of the subtype selectivity of each drug is different. The alpha1A-AR selectivity of KMD-3213 can be explained by its much higher affinity for alpha1a-AR than alpha1b-AR (affinity-dependent selectivity), while the alpha1B-AR selectivity of the hydrophilic alkylating agent CEC is due to preferential inactivation of alpha1-ARs on the cell surface (receptor localization-dependent selectivity). This study illustrates that factors in addition to the affinity of the drug for the receptor, such as subcellular localization of the receptor, should be taken into account in assessing the subtype selectivity of a drug.


Assuntos
Compostos de Boro/metabolismo , Clonidina/análogos & derivados , Corantes Fluorescentes/metabolismo , Receptores Adrenérgicos alfa 1/metabolismo , Antagonistas Adrenérgicos alfa/farmacologia , Animais , Compostos de Boro/química , Células COS/química , Células COS/efeitos dos fármacos , Clonidina/farmacologia , Citometria de Fluxo , Corantes Fluorescentes/química , Indóis/farmacologia , Ligantes , Microscopia Confocal , Prazosina/química , Receptores Adrenérgicos alfa 1/análise , Receptores Adrenérgicos alfa 1/classificação , Frações Subcelulares/química , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA