Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nature ; 579(7800): 518-522, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32214245

RESUMO

Carbonaceous (C-type) asteroids1 are relics of the early Solar System that have preserved primitive materials since their formation approximately 4.6 billion years ago. They are probably analogues of carbonaceous chondrites2,3 and are essential for understanding planetary formation processes. However, their physical properties remain poorly known because carbonaceous chondrite meteoroids tend not to survive entry to Earth's atmosphere. Here we report on global one-rotation thermographic images of the C-type asteroid 162173 Ryugu, taken by the thermal infrared imager (TIR)4 onboard the spacecraft Hayabusa25, indicating that the asteroid's boulders and their surroundings have similar temperatures, with a derived thermal inertia of about 300 J m-2 s-0.5 K-1 (300 tiu). Contrary to predictions that the surface consists of regolith and dense boulders, this low thermal inertia suggests that the boulders are more porous than typical carbonaceous chondrites6 and that their surroundings are covered with porous fragments more than 10 centimetres in diameter. Close-up thermal images confirm the presence of such porous fragments and the flat diurnal temperature profiles suggest a strong surface roughness effect7,8. We also observed in the close-up thermal images boulders that are colder during the day, with thermal inertia exceeding 600 tiu, corresponding to dense boulders similar to typical carbonaceous chondrites6. These results constrain the formation history of Ryugu: the asteroid must be a rubble pile formed from impact fragments of a parent body with microporosity9 of approximately 30 to 50 per cent that experienced a low degree of consolidation. The dense boulders might have originated from the consolidated innermost region or they may have an exogenic origin. This high-porosity asteroid may link cosmic fluffy dust to dense celestial bodies10.

2.
Proc Jpn Acad Ser B Phys Biol Sci ; 98(6): 227-282, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35691845

RESUMO

Presented here are the observations and interpretations from a comprehensive analysis of 16 representative particles returned from the C-type asteroid Ryugu by the Hayabusa2 mission. On average Ryugu particles consist of 50% phyllosilicate matrix, 41% porosity and 9% minor phases, including organic matter. The abundances of 70 elements from the particles are in close agreement with those of CI chondrites. Bulk Ryugu particles show higher δ18O, Δ17O, and ε54Cr values than CI chondrites. As such, Ryugu sampled the most primitive and least-thermally processed protosolar nebula reservoirs. Such a finding is consistent with multi-scale H-C-N isotopic compositions that are compatible with an origin for Ryugu organic matter within both the protosolar nebula and the interstellar medium. The analytical data obtained here, suggests that complex soluble organic matter formed during aqueous alteration on the Ryugu progenitor planetesimal (several 10's of km), <2.6 Myr after CAI formation. Subsequently, the Ryugu progenitor planetesimal was fragmented and evolved into the current asteroid Ryugu through sublimation.


Assuntos
Meteoroides , Sistema Solar , Água
3.
Orig Life Evol Biosph ; 43(3): 221-45, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23877440

RESUMO

Cyanide compounds are amongst the most important molecules of the origin of life. Here, we demonstrate the importance of mid-size (0.1-1 km in diameter) hence frequent meteoritic impacts to the cyanide inventory on the early Earth. Subsequent aerodynamic ablation and chemical reactions with the ambient atmosphere after oblique impacts were investigated by both impact and laser experiments. A polycarbonate projectile and graphite were used as laboratory analogs of meteoritic organic matter. Spectroscopic observations of impact-generated ablation vapors show that laser irradiation to graphite within an N2-rich gas can produce a thermodynamic environment similar to that produced by oblique impacts. Thus, laser ablation was used to investigate the final chemical products after this aerodynamic process. We found that a significant fraction (>0.1 mol%) of the vaporized carbon is converted to HCN and cyanide condensates, even when the ambient gas contains as much as a few hundred mbar of CO2. As such, the column density of cyanides after carbon-rich meteoritic impacts with diameters of 600 m would reach ~10 mol/m(2) over ~10(2) km(2) under early Earth conditions. Such a temporally and spatially concentrated supply of cyanides may have played an important role in the origin of life.


Assuntos
Atmosfera/química , Evolução Química , Cianeto de Hidrogênio/química , Meteoroides , Carbono/química , Planeta Terra , Concentração de Íons de Hidrogênio , Lasers , Nitrogênio/química , Oxirredução
4.
Nat Commun ; 12(1): 5837, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34611167

RESUMO

Ryugu is a carbonaceous rubble-pile asteroid visited by the Hayabusa2 spacecraft. Small rubble pile asteroids record the thermal evolution of their much larger parent bodies. However, recent space weathering and/or solar heating create ambiguities between the uppermost layer observable by remote-sensing and the pristine material from the parent body. Hayabusa2 remote-sensing observations find that on the asteroid (162173) Ryugu both north and south pole regions preserve the material least processed by space weathering, which is spectrally blue carbonaceous chondritic material with a 0-3% deep 0.7-µm band absorption, indicative of Fe-bearing phyllosilicates. Here we report that spectrally blue Ryugu's parent body experienced intensive aqueous alteration and subsequent thermal metamorphism at 570-670 K (300-400 °C), suggesting that Ryugu's parent body was heated by radioactive decay of short-lived radionuclides possibly because of its early formation 2-2.5 Ma. The samples being brought to Earth by Hayabusa2 will give us our first insights into this epoch in solar system history.

5.
Appl Spectrosc ; 71(8): 1969-1981, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28447482

RESUMO

In situ radiogenic isotope measurements to obtain the absolute age of geologic events on planets are of great scientific value. In particular, K-Ar isochrons are useful because of their relatively high technical readiness and high accuracy. Because this isochron method involves spot-by-spot K measurements using laser-induced breakdown spectroscopy (LIBS) and simultaneous Ar measurements with mass spectrometry, LIBS measurements are conducted under a high vacuum condition in which emission intensity decreases significantly. Furthermore, using a laser power used in previous planetary missions is preferable to examine the technical feasibility of this approach. However, there have been few LIBS measurements for K under such conditions. In this study, we measured K contents in rock samples using 30 mJ and 15 mJ energy lasers under a vacuum condition (10-3 Pa) to assess the feasibility of in situ K-Ar dating with lasers comparable to those used in NASA's Curiosity and Mars 2020 missions. We obtained various calibration curves for K using internal normalization with the oxygen line at 777 nm and continuum emission from the laser-induced plasma. Experimental results indicate that when K2O < 1.1 wt%, a calibration curve using the intensity of the K emission line at 769 nm normalized with that of the oxygen line yields the best results for the 30 mJ laser energy, with a detection limit of 88 ppm and 20% of error at 2400 ppm of K2O. Futhermore, the calibration curve based on the K 769 nm line intensity normalized with continuum emission yielded the best result for the 15 mJ laser, giving a detection limit of 140 ppm and 20% error at 3400 ppm K2O. Error assessments using obtained calibration models indicate that a 4 Ga rock with 3000 ppm K2O would be measured with 8% (30 mJ) and 10% (15 mJ) of precision in age when combined with mass spectrometry of 40Ar with 10% of uncertainty. These results strongly suggest that high precision in situ isochron K-Ar dating is feasible with a laser used in previous and upcoming Mars rover missions.

6.
Sci Adv ; 2(8): e1600157, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27493993

RESUMO

Forsterite (Mg2SiO4) is one of the major planetary materials, and its behavior under extreme conditions is important to understand the interior structure of large planets, such as super-Earths, and large-scale planetary impact events. Previous shock compression measurements of forsterite indicate that it may melt below 200 GPa, but these measurements did not go beyond 200 GPa. We report the shock response of forsterite above ~250 GPa, obtained using the laser shock wave technique. We simultaneously measured the Hugoniot and temperature of shocked forsterite and interpreted the results to suggest the following: (i) incongruent crystallization of MgO at 271 to 285 GPa, (ii) phase transition of MgO at 285 to 344 GPa, and (iii) remelting above ~470 to 500 GPa. These exothermic and endothermic reactions are seen to occur under extreme conditions of pressure and temperature. They indicate complex structural and chemical changes in the system MgO-SiO2 at extreme pressures and temperatures and will affect the way we understand the interior processes of large rocky planets as well as material transformation by impacts in the formation of planetary systems.


Assuntos
Fenômenos Físicos , Pressão , Compostos de Silício , Lasers , Transição de Fase
7.
Neural Netw ; 28: 82-9, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22226618

RESUMO

An analytical method to deconvolute spectral data into a number of simple bands is extremely important in the analysis of the chemical properties of matter. However, there are two fundamental problems with such deconvolution methods. One is how to determine the number of bands without resorting to heuristics. The other is difficulty in avoiding the parameter solution trapped into local minima due to the hierarchy and the nonlinearity of the system. In this study, we propose a novel method of spectral deconvolution based on Bayesian estimation with the exchange Monte Carlo method, which is an application of the integral approximation of stochastic complexity and the exchange Monte Carlo method. We also experimentally show its effectiveness on synthetic data and on reflectance spectral data of olivine, one of the most common minerals of terrestrial planets.


Assuntos
Método de Monte Carlo , Redes Neurais de Computação , Teorema de Bayes
9.
Science ; 323(5916): 900-5, 2009 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-19213911

RESUMO

The farside gravity field of the Moon is improved from the tracking data of the Selenological and Engineering Explorer (SELENE) via a relay subsatellite. The new gravity field model reveals that the farside has negative anomaly rings unlike positive anomalies on the nearside. Several basins have large central gravity highs, likely due to super-isostatic, dynamic uplift of the mantle. Other basins with highs are associated with mare fill, implying basalt eruption facilitated by developed faults. Basin topography and mantle uplift on the farside are supported by a rigid lithosphere, whereas basins on the nearside deformed substantially with eruption. Variable styles of compensation on the near- and farsides suggest that reheating and weakening of the lithosphere on the nearside was more extensive than previously considered.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA